hero image
Fumiko Hoeft - University of Connecticut. Storrs, CT, US

Fumiko Hoeft Fumiko Hoeft

Scientific Director | University of Connecticut

Storrs, CT, UNITED STATES

Will be leading UConn's Brian Imaging Research Center (BIRC), and joining the Department of Psychological Sciences.

Biography

Dr. Fumiko Hoeft is a cognitive neuroscientist, with theoretical interests in the neurobiological mechanisms underlying individual differences in brain maturational processes and the acquisition of skills such as reading (and dyslexia). She will be leading the Brian Imaging Research Center (BIRC), and joining the Department of Psychological Sciences. She has an impressive track record of externally-funded research and development, and a dynamic vision for the future of BIRC.

Areas of Expertise (5)

Neuroimaging Scientific Writing Neuroscience Science Life Sciences

Education (1)

Keio University: MD, PhD, Medicine, Neuroscience 2003

Social

Media

Publications:

Documents:

Photos:

loading image loading image loading image

Videos:

“Dyslexia, Learning Differently, and Innovation” | Fumiko Hoeft | TEDxSausalito ADHD and Dyslexia: Why Do They So Often Co-Occur? Teachable Moments - Fumiko Hoeft

Audio:

Media Appearances (4)

Like Mother, Like Daughter

Scientific American  online

2016-05-01

“We joke about inheriting stubbornness or organization—but we've never actually seen that in human brain networks before,” says lead author Fumiko Hoeft, an associate professor of psychiatry at the University of California, San Francisco. The finding suggests a significant female-specific maternal transmission pattern in emotional responses. This could include mood disorders such as depression, although confirming that would mean extending the research to encompass families with a history of such disorders, notes Geneviève Piché, a psychology professor at the University of Quebec at Outaouais who was not involved in the study.

view more

Mothers may pass daughters a brain wired for depression

Reuters  online

2016-02-18

“While our study was not directly done in depressed families, our findings may mean that if mothers have brain structural anomalies in the corticolimbic circuitry, their female but not male offspring are more likely to have similar abnormal structural patterns in the same brain regions, which would be consistent with how depression is linked within families,” said lead study author Dr. Fumiko Hoeft of the University of California, San Francisco

view more

How Children Learn To Read

The New Yorker  online

2015-02-11

This is the mystery that has animated the work of Fumiko Hoeft, a cognitive neuroscientist and psychiatrist currently at the University of California, San Francisco. “You know where the color of your eyes came from, your facial features, your hair, your height. Maybe even your personality—I’m stubborn like mom, sloppy like dad,” Hoeft says. “But what we’re trying to do is find out, by looking at brain networks and accounting for everything in the environment, is where your reading ability originates.”

view more

Doubts raised over dyslexia diagnoses

The Telegraph  online

2011-09-29

Fumiko Hoeft and colleagues added that "any child with a reading difficulty, regardless of his or her general level of cognitive abilities (IQ), should be encouraged to seek reading intervention".

view more

Articles (5)

Neural Noise Hypothesis of Developmental Dyslexia. Trends in Cognitive Sciences

Hancock R, Pugh KR, Hoeft F.

2017-06-21

Developmental dyslexia (decoding-based reading disorder; RD) is a complex trait with multifactorial origins at the genetic, neural, and cognitive levels. There is evidence that low-level sensory-processing deficits precede and underlie phonological problems, which are one of the best-documented aspects of RD. RD is also associated with impairments in integrating visual symbols with their corresponding speech sounds. Although causal relationships between sensory processing, print-speech integration, and fluent reading, and their neural bases are debated, these processes all require precise timing mechanisms across distributed brain networks. Neural excitability and neural noise are fundamental to these timing mechanisms. Here, we propose that neural noise stemming from increased neural excitability in cortical networks implicated in reading is one key distal contributor to RD.

view more

Possible roles for fronto-striatal circuits in reading disorder. Neuroscience and Biobehavioral Reviews

Hancock R, Richlan F, Hoeft F

2016-11-05

Several studies have reported hyperactivation in frontal and striatal regions in individuals with reading disorder (RD) during reading-related tasks. Hyperactivation in these regions is typically interpreted as a form of neural compensation related to articulatory processing. Fronto-striatal hyperactivation in RD could however, also arise from fundamental impairment in reading related processes, such as phonological processing and implicit sequence learning relevant to early language acquisition. We review current evidence for the compensation hypothesis in RD and apply large-scale reverse inference to investigate anatomical overlap between hyperactivation regions and neural systems for articulation, phonological processing, implicit sequence learning. We found anatomical convergence between hyperactivation regions and regions supporting articulation, consistent with the proposed compensatory role of these regions, and low convergence with phonological and implicit sequence learning regions. Although the application of large-scale reverse inference to decode function in a clinical population should be interpreted cautiously, our findings suggest future lines of research that may clarify the functional significance of hyperactivation in RD.

view more

Intergenerational Neuroimaging of Human Brain Circuitry. Trends in Neuroscience

Ho TC, Sanders SJ, Gotlib IH, Hoeft F

2016-10-10

Neuroscientists are increasingly using advanced neuroimaging methods to elucidate the intergenerational transmission of human brain circuitry. This new line of work promises to shed light on the ontogeny of complex behavioral traits, including psychiatric disorders, and possible mechanisms of transmission. Here we highlight recent intergenerational neuroimaging studies and provide recommendations for future work.

view more

Integrating MRI brain imaging studies of pre-reading children with current theories of developmental dyslexia: A review and quantitative meta-analysis. Current Opinion in Behavioral Sciences

Vandermosten M, Hoeft F, Norton ES

2016-08-10

The neurobiological substrates that cause people with dyslexia to experience difficulty in acquiring accurate and fluent reading skills are still largely unknown. Although structural and functional brain anomalies associated with dyslexia have been reported in adults and school-age children, these anomalies may represent differences in reading experience rather than the etiology of dyslexia. Conducting MRI studies of pre-readers at risk for dyslexia is one approach that enables us to identify brain alterations that exist before differences in reading experience emerge. The current review summarizes MRI studies that examine brain differences associated with risk for dyslexia in children before reading instruction and meta-analyzes these studies. In order to link these findings with current etiological theories of dyslexia, we focus on studies that take a modular perspective rather than a network approach. Although some of the observed differences in pre-readers at risk for dyslexia may still be shaped by language experiences during the first years of life, such studies underscore the existence of reading-related brain anomalies prior to reading onset and could eventually lead to earlier and more precise diagnosis and treatment of dyslexia.

view more

Female-Specific Intergenerational Transmission Patterns of the Human Corticolimbic Circuitry. Journal of Neuroscience

Yamagata B, Murayama K, Black JM, Hancock R, Mimura M, Yang TT, Reiss AL, Hoeft F

2016-01-27

Parents have large genetic and environmental influences on offspring's cognition, behavior, and brain. These intergenerational effects are observed in mood disorders, with particularly robust association in depression between mothers and daughters. No studies have thus far examined the neural bases of these intergenerational effects in humans. Corticolimbic circuitry is known to be highly relevant in a wide range of processes, including mood regulation and depression. These findings suggest that corticolimbic circuitry may also show matrilineal transmission patterns. Therefore, we examined human parent-offspring association in this neurocircuitry and investigated the degree of association in gray matter volume between parent and offspring. We used voxelwise correlation analysis in a total of 35 healthy families, consisting of parents and their biological offspring. We found positive associations of regional gray matter volume in the corticolimbic circuit, including the amygdala, hippocampus, anterior cingulate cortex, and ventromedial prefrontal cortex between biological mothers and daughters. This association was significantly greater than mother-son, father-daughter, and father-son associations. The current study suggests that the corticolimbic circuitry, which has been implicated in mood regulation, shows a matrilineal-specific transmission patterns. Our preliminary findings are consistent with what has been found behaviorally in depression and may have clinical implications for disorders known to have dysfunction in mood regulation such as depression. Studies such as ours will likely bridge animal work examining gene expression in the brains and clinical symptom-based observations and provide promising ways to investigate intergenerational transmission patterns in the human brain.

view more

Contact