hero image
Adrian  Marchetti, Ph.D. - UNC-Chapel Hill. Chapel Hill, NC, US

Adrian Marchetti, Ph.D. Adrian  Marchetti, Ph.D.

Associate Professor, Department of Earth, Marine and Environmental Sciences, College of Arts and Sciences | UNC-Chapel Hill


Adrian Marchetti investigates how phytoplankton are affected by their environment and in turn, influence ocean biogeochemistry.





loading image





Adrian Marchetti is an Assistant Professor of Marine Sciences in UNC's College of Arts and Sciences. His primary research focus is biogeochemical evolution of phytoplankton in marine environments. His lab investigates how phytoplankton are affected by their environment and in turn, influence ocean biogeochemistry and ecosystem dynamics. Particular interests include studying trace metals, such as iron, that are essential for the nutrition of phytoplankton and predicting the effects of future climate changes on phytoplankton distribution and abundance.

Areas of Expertise (6)

Marine Ecology

Phytoplankton Ecophysiology

Microbial Ecology

Molecular Biology

Biological Oceanography

Aquatic Biogeochemical Processes

Education (2)

University of British Columbia: Ph.D, Botany 2005

McGill University: B.Sc, Biology 1998

Media Appearances (2)

Diatom Discovery Could Change Climate Models

Earth and Environment  online


“Without the existence of these proteins that could help phytoplankton cope in these stressful environments, the phytoplankton diversity in many regions of the ocean would be much lower, in particular by reducing large phytoplankton such as diatoms that are known to take up a lot of carbon dioxide,” says Adrian Marchetti, assistant professor of marine science at the University of North Carolina-Chapel Hill.

view more

Protein identified in certain microalgae changes conversation about climate change

PHYS  online


Adrian Marchetti and his team of oceanographers at the University of North Carolina at Chapel Hill have identified —for the first time—that a protein called proteorhodopsin could allow a major group of phytoplankton to survive in iron-limited regions of the ocean.

view more

Articles (6)

For more publications click here

Adrian Marchetti

department of marine sciences

view more

Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability

Proceedings of the National Academy of Sciences

2012 ABSTRACT: In vast expanses of the oceans, growth of large phytoplankton such as diatoms is limited by iron availability. Diatoms respond almost immediately to the delivery of iron and rapidly compose the majority of phytoplankton biomass. The molecular bases underlying the subsistence of diatoms in iron-poor waters and the plankton community dynamics that follow iron resupply remain largely unknown. Here we use comparative metatranscriptomics to identify changes in gene expression associated with iron-stimulated growth of diatoms ...

view more

Ferritin is used for iron storage in bloom-forming marine pennate diatoms


2009 ABSTRACT: Primary productivity in 30–40% of the world's oceans is limited by availability of the micronutrient iron. Regions with chronically low iron concentrations are sporadically pulsed with new iron inputs by way of dust or lateral advection from continental margins...

view more

Phytoplankton processes during a mesoscale iron enrichment in the NE subarctic Pacific: Part I—biomass and assemblage

Deep Sea Research Part II: Topical Studies in Oceanography

2006 ABSTRACT: We report results from the Subarctic Ecosystem Response to Iron Enrichment Study (SERIES) experiment in waters of the NE subarctic Pacific in which a large scale iron (Fe) enrichment lead to a shift in the phytoplankton assemblage from pico-and nanophytoplankton to one dominated by large diatoms...

view more

Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment

Journal of Geophysical Research: Oceans

2005 ABSTRACT: Comparison of eight iron experiments shows that maximum Chl a, the maximum DIC removal, and the overall DIC/Fe efficiency all scale inversely with depth of the wind mixed layer (WML) defining the light environment. Moreover, lateral patch dilution, sea surface irradiance, temperature, and grazing play additional roles. The Southern Ocean experiments were most influenced by very deep WMLs. In contrast, light conditions were most favorable during SEEDS and SERIES as well as during IronEx-2...

view more

The decline and fate of an iron-induced subarctic phytoplankton bloom

Nature Publishing Group

2004 ABSTRACT: Iron supply has a key role in stimulating phytoplankton blooms in high-nitrate low-chlorophyll oceanic waters. However, the fate of the carbon fixed by these blooms, and how efficiently it is exported into the ocean's interior, remains largely unknown. Here we report on the decline and fate of an iron-stimulated diatom bloom in the Gulf of Alaska...

view more