Experts Matter. Find Yours.
Search experts on 50,000+ topics. Or browse by topic category.
- Recent Searches
- Human Rights
- Supply Chain
- Mental Health
- China
- American Politics
Featured
Global experts with a broad range of areas of expertise.
Connecting credible expert sources & academic research
ExpertFile is a trusted resource for journalists, industry, funding agencies and government policymakers looking for fresh perspectives and innovative academic research.
Spotlights
Read expert insights on a wide variety of topics and current events.

Digital Dementia: Does Technology Use by ‘Digital Pioneers’ Correlate to Cognitive Decline?
As the first generation that interacted with digital technology reaches an age where dementia risks emerge, scientists have asked the question: Is there a correlation between digital technology use and an increased risk of dementia? With the phrases “brain rot” and “brain drain” circulating on social media, it would appear that most people would assume the answer is yes. However, a new study in Nature Human Behavior by neuroscientists at Baylor University and the University of Texas at Austin Dell Medical School reveals the opposite – digital technologies are actually associated with reduced cognitive decline. The study – A meta-analysis of technology use and cognitive aging – was sparked by the ongoing concern about the passive activity of digital technologies and their relation to accelerating risks of dementia. Study co-authors are Jared F. Benge, Ph.D., clinical neuropsychologist and associate professor of neurology at Dell Medical School and UT Health Austin’s Comprehensive Memory Center within the Mulva Clinic for the Neurosciences, and Michael K. Scullin, Ph.D., associate professor of psychology and neuroscience at Baylor. “You can flip on the news on just about any day and you’ll see people talking about how technologies are harming us,” Scullin said. “People often use the terms ‘brain drain’ and ‘brain rot,’ and now digital dementia is an emerging phrase. As researchers, we wanted to know if this was true.” The “digital dementia” hypothesis predicts that a lifetime of exposure to digital technology will worsen cognitive abilities. On the contrary, the study’s findings challenge this hypothesis, indicating instead that engagement with digital technology fosters cognitive resilience in these adults. Reviewing more than 136 studies with data that encompassed over 400,000 adults, and longitudinal studies with an average of 6 years of follow-up data, Scullin and Benge found compelling evidence that digital technology use is associated with better cognitive aging outcomes, rather than harm. The researchers’ study supported the “technological reserve” hypothesis, finding that digital technologies can promote behaviors that preserve cognition. In fact, their study revealed that digital technology use correlates with a 58% lower risk of cognitive impairment. This pattern of cognitive protection persisted when the researchers controlled for socioeconomic status, education, age, gender, baseline cognitive ability, social support, overall health, and engagement with mental activities like reading that might have explained the findings. Increase in problem-solving skills Scullin said that for some, these findings are surprising as technology use is often associated with being sedentary both physically and mentally. However, for the current generation of older adults who were introduced to the first technological advancements – computers, the Internet and smartphones – past their childhood, using technology is cognitively challenging because it is everchanging. “One of the first things that middle-age and older adults were saying is that ‘I’m so frustrated by this computer. This is hard to learn.’ That's actually a reflection of the cognitive challenge, which may be beneficial for the brain even if it doesn’t feel great in the moment.” Scullin said. Technology requires constant adaption, he said, such as understanding new software updates, troubleshooting Internet loss or filtering out website ads. “If you’re doing that for years and you’re really engaging with it, even though you might experience frustration, that may be a sign of you exercising your brain,” he said. Social connection Technology also enables communication and engagement like never before, which can expand opportunities for connectivity. Video calls, emails and messaging apps help maintain social networks, especially for people who would not otherwise regularly see their family members. “Now you can connect with families across generations,” Scullin said. “You not only can talk to them, you can see them. You can share pictures. You can exchange emails and it's all within a second or less. So that means there's a greater opportunity for decreasing loneliness.” Better social connectedness is a well-documented correlate of cognitive functioning in older adults, providing a link between decreased isolation from digital technologies and reduced risks of dementia. Impact of “digital scaffolding” A dementia diagnosis is indicated in part when cognitive changes lead to a loss of independence with daily tasks. Tools such as digital reminders, GPS navigation and online banking allow older adults to remain independent despite cognitive difficulties through digital scaffolding. According to the research article, this digital scaffold “facilitates better functional outcomes in older adults while general cognitive functioning declines.” Technologies can serve as a compensatory support system to maintain general independence and reduce the risk of a dementia diagnosis even with the presence of some cognitive decline. “As clinical practice continues to move toward an individualized, precision-medicine approach, it will be necessary for the field to identify for whom and for how long, such digital scaffolding is effective,” the researchers said. Promoting healthy technology use While Scullin recognizes the negative effects of technology, such as distracted driving or using technology over consistent face-to-face interaction, he also emphasizes how promoting a healthy use of digital tools in older adults is beneficial for their cognitive health. “If you have a parent or grandparent who’s just staying away from technology, maybe revisit that. Could they learn to use photo, messaging, or calendar apps on a smartphone or tablet? Start simple and be very patient while they learn,” he said. Social media use is another highly debated topic in terms of cognitive effects. While he says it’s hard to predict the cognitive effects of endlessly scrolling on TikTok, Scullin does argue that generating videos through creative cognition could be beneficial. In addition, he said that interacting with communities online can provide benefits by forming social connections. “We could spend a long time talking about all the specific ways in which technology use can be bad. However, the net effect since the 1990s has been positive for overall cognition in older adults,” he said. FUNDING The study was supported by funding from the National Institutes of Health (R01AG082783; M.K.S., J.F.B.). Michael Scullin was named Baylor’s inaugural Newsmaker of the Year in 2018, after his “to-do list” research was widely covered by media outlets, including ABC’s Good Morning America, TODAY.com, USA TODAY, Discover, LiveScience, HealthDay, BBC Radio and many more, reaching an international circulation and viewership of nearly 1 billion people. Looking to interview or chat with Michael Scullin? Simply click on his icon now to arrange an interview today.

Taking ACT-ion for Quality Improvement
“Learning is a journey. It is continuous,” said nurse Hellen Okoth, MSN, CCRN, RN-BC, of the Transitional Surgical Unit. She was one of the learners on that journey through ChristianaCare’s professional development program Achieving Competency Today (ACT). ACT, a 12-week graduate-level program dedicated to health care improvement, will celebrate its 40th session in 2025. Some 1,000 caregivers have graduated from ACT and have tested some 140 innovative project ideas since the program’s launch in 2003. On April 9, three ACT teams presented their quality improvement projects at the John H. Ammon Medical Education Center on ChristianaCare’s Newark campus. Interdisciplinary, experiential learning programs like ACT create a rich and dynamic learning environment,” said Tabassum Salam, M.D., MBA, FACP, chief learning officer for ChristianaCare. “The emphasis on continuous improvement and real-world applications of the educational content sets our ACT graduates up for lifelong learning and repeated application of these new skills.” The ACT course is a collaborative experience that brings together learners from diverse disciplines to tackle real-world health care challenges. Participants learn from health system leaders and gain a broad perspective on health care through coursework. They work in teams to complete problem-solving projects from start to finish using the Plan-Do-Check-Act (PCDA) model of continuous improvement. Facilitators, who are experts in improvement science and team effectiveness, guide the teams through the process, ensuring that each project is meticulously planned and executed. ChristianaCare offers many professional development opportunities. Click here for careers and benefits. “The hands-on projects in ACT enable learners to innovate and test out solutions in settings that directly benefit patients, leading to better outcomes and a higher quality of care,” Salam said. The three most recent teams presented improvement research that has the potential to expand beyond their pilot stage to other areas of the health system. ‘Hush! For the Love of Health’ In “Hush! For the Love of Health,” an interdisciplinary team worked to reduce noise levels on the Cardiovascular Critical Care Unit (CVCCC) at Christiana Hospital. Their goal was to decrease ambient noise levels by 10 decibels during the study period. Intensive care units often experience noise levels that can exceed 80 decibels. A quiet environment is 30 to 40 decibels. Members of the “Hush” project found creative ways to reduce noise on an intensive care unit. Ambient noise refers to all sounds present in the background, which research shows can interfere with communication, concentration and comfort. In a hospital setting, these sounds may include alarms, conversations, announcement and pages and carts moving by. The team looked for opportunities to safely reduce the number of alarms sounding. By collaborating with Philips technology company to lower alarm volumes and eliminate redundant alarms, they reduced the number of alarms sounding from 10,000 to 3,000 daily and successfully decreased noise levels by 13 decibels, exceeding their goal. “It’s good for patients to have a quiet environment and it fights alarm fatigue for caregivers,” said Dylan Norris, a pre-medical student from the University of Delaware and participant in the ACT course. ‘Show Up and Show Out’ Reducing the no-show rate among patients in primary care practices improves health outcomes and conserves resources. In “Show Up and Show Out: Boosting Patient Attendance in Primary Care,” the project team aimed to reduce the incidence of no-show appointments at the Wilmington Adult Medicine (WAM) practice by 10%. The “Show Up and Show Out” project team used personalized communication outreach to patients to encourage keeping their primary care appointments. “Our literature review showed that personal relationships with providers are one thing that can encourage people to attend appointments,” said team member Christi Karawan, MS, BSN, CCRN-CSC. The key to their problem-solving strategy was using a secure messaging platform for automatic appointment reminders specifically for WAM that were personalized with the provider’s name and thanking the patients for letting WAM be a part of their healthcare team. Other steps on the road to success were signage around the practice encouraging patients to update their contact information and calls from office assistants and medical assistants to unconfirmed patients the day prior to their appointments. The team achieved a 9.5% reduction in no-shows, just shy of their goal, over a two-week period. An office assistant who participated in the pilot said, “Outreach has been helpful not only in getting people in but in getting people to reschedule or cancel. We can catch it before it becomes a no-show.” ‘Magnetic Efficiency’ To address delays in patient transport from MRI testing at Newark campus, an ACT team created a new communication workflow to directly connect patient escort dispatch to the MRI charge technician. The ACT team aimed to decrease patient wait times following MRI completion for stretcher transport back to patients rooms by 25% — and “a bold goal,” said one colleague — during the study period. The “Magnetic Efficiency” team identified a new workflow to get patients back to their hospital rooms faster after MRI testing. Using Vocera wearable communications tools, the team created a thread for direct communication between Escort Dispatch caregivers and MRI charge technicians. Also, when an Escort transporter dropped off a patient for an MRI, the transporter asked MRI staff if any patients were ready to go back to their rooms. These changes in communication and empowerment consolidated transports and led to a 17% reduction in wait time during the two-week pilot. “We don’t want people to work harder,” said team member Tim Kane, BSN, RN. “We wanted to avoid preventable delays.” Both teams expressed satisfaction and improved communication with the new process and they expressed interest in continuing the process after the pilot ended. Future forward The ACT course has a rich history, originating from a specific initiative piloted by the Robert Wood Johnson Foundation with ChristianaCare among the early adopters along with Harvard University, the University of Pennsylvania, Johns Hopkins University and Beth Israel Deaconess Medical Center. Through the years, ChristianaCare ACT team members have seen their projects live on both as permanent changes throughout the health system and, more personally, in their professional growth. “I was able to enhance my creativity, organizational and problem-solving skills,” said Starr Lumpkin, a staff assistant who was on the “Hush” team. “This was a pivotal journey for me.” ChristianaCare is growing its program to develop a pipeline for the next generation of health professionals, said Safety and Quality Education Specialist Claire Rudolph, MSM, CPHQ. “We have a varied group of learners and facilitators who are making an impact on health care quality, cost and safety.” Dylan Norris was the first participant from a new partnership with the University of Delaware for pre-med students to get quality improvement experience. “I have learned so much about what goes into a quality improvement project. Buy-in from the stakeholders is key in implementing any new project successfully,” she said. “I have also learned about the importance of the initial research that goes into creating a new project and how much pre-planning goes into it.” Closing the event, Clinical Effectiveness Officer Christian Coletti, M.D., MHCDS, FACEP, FACP, called on the ACT graduates to use their newfound “superpowers” — “vision, seeing the future, catching something before it breaks. “It’s not a glitch in the matrix,” he said. “You are the most important people at the bedside – hearing the alarms going off or the stretchers piling up. Work to identify problems and move toward solutions in your own microenvironments. Pass on your powers with reckless abandon.”

Got Expertise to Share?
Join leading professionals already using ExpertFile’s easy to use Platform for showcasing your organization’s experts and their insights on your website...and to the world.

Media Appearances by James Sample – Latest Highlights
Professor of Law James Sample provided legal insights on New York City Mayor Eric Adams’ federal corruption case being dismissed “with prejudice,” with CBS News New York. Sample also provided commentary to CBS News Radio on a federal judge’s order to return Kilmar Abrego Garcia from an El Salvador prison, and on Elon Musk’s cash incentives for individuals who vote against “activist judges” with German news network ZDFheute.

Researchers laying the groundwork to eventually detect cerebral palsy via blood test
At the University of Delaware, molecular biologist Mona Batish in collaboration with Dr. Robert Akins at Nemours Children Hospital, is studying tiny loops in our cells called circular RNAs — once thought to be useless leftovers, but now believed to play an important role in diseases like cancer and cerebral palsy (CP). This is detailed in a new article in the Journal of Biological Chemistry. What are circular RNAs? They’re a special type of RNA that doesn’t make proteins but instead helps control how genes are turned on and off. Because they’re stable and can be found in blood, they may help doctors detect diseases more easily. So what’s the connection to cerebral palsy? CP is the most common physical disability in children, but right now it’s diagnosed only after symptoms appear — there’s no clear-cut test for it. Batish and her team are trying to change that. Working with researchers at Nemours Children’s Health, Batish discovered that in children with CP, a certain circular RNA — circNFIX — is found at much lower levels in muscle cells. This RNA normally helps the body make an important muscle-building protein called MEF2C. When circNFIX is missing or low, MEF2C isn’t made properly, which may lead to the weakened, shorter muscles seen in CP. This is the first time researchers have shown a link between circular RNAs and human muscle development in cerebral palsy. Why does this matter? If scientists can confirm this link, it could lead to: Earlier and more accurate diagnosis of CP using a simple blood test New treatments that help improve muscle development in affected children Batish’s ultimate goal? To create a test that can spot CP at birth — or even before — giving kids a better shot at early treatment and a higher quality of life. To speak to Batish, contact mediarelations@udel.edu.

MEDIA RELEASE: CAA survey finds cannabis-impaired driving remains a concern in Manitoba
As 4/20 approaches, a survey conducted on behalf of CAA Manitoba reveals a trend: while most drivers in the province recognize the risks of cannabis-impaired driving, a significant number continue to drive after consuming cannabis—often in combination with other substances like alcohol or prescription medication. “Manitobans who decide to drive after consuming cannabis often underestimate the risks associated with this action,” said Ewald Friesen, manager, government relations, CAA Manitoba. “People still seem to believe that they have no alternative but to drive home or that the drive is short enough that it doesn’t matter. We are here to remind Manitobans that while cannabis use is legal and can be safely consumed, you should never do it before driving.” Forty-seven per cent of Manitoba drivers used cannabis in 2024; 36 per cent tried cannabis this year for the first time since legalization. Despite growing awareness of the risks, 18 per cent of Manitoba drivers admit to driving after using cannabis, with the majority doing so within just three hours of consumption. Half of those surveyed are driving within three hours of consumption. The survey also revealed that 53 per cent of recent cannabis-impaired drivers reported driving shortly after consumption, with 36 per cent feeling high while behind the wheel. Alarmingly, 79 per cent expressed confidence in their driving ability while impaired, though 71 per cent expressed concern about being caught. “There is a common misconception on how cannabis affects drivers,” says Friesen, “however, it has been proven that cannabis use can impact a driver’s reaction time, judgement, coordination and decision-making.” Driving after consuming edibles has been a growing trend since last year. While smoking remains the primary mode of cannabis use, the survey highlights a growing trend of driving after consuming edibles, which can have delayed and unpredictable effects. Solid edibles (67 per cent) and joints (61 per cent) are the most used formats, and more than half of cannabis users prefer edibles over any other format. "Unlike other forms of cannabis, edibles often have delayed and unpredictable effects, which can significantly impair judgment and reaction times,” adds Friesen. “It is crucial for individuals to recognize these differences and prioritize safety, not only for themselves but for everyone sharing the road." There is a disconnect between what people believe and how they behave when it comes to cannabis and driving. Although 93 per cent of Manitoba drivers agree that cannabis-impaired driving is a serious road safety issue, many still view it as less dangerous than alcohol or prescription opioids. This disconnect between perception and behaviour underscores the need for continued education and enforcement. The penalties for impaired driving are serious and can include: • Immediate 24-hour licence suspension (up to 60 days pending further testing) • Three-day vehicle impoundment • A $400 fine • Mandatory Impaired Driver Assessment • Additional administrative penalties, ignition interlock program requirements, and possible charges under the Criminal Code of Canada CAA Manitoba encourages all motorists to make safe, informed choices: • Know the rules and understand how different cannabis products affect the body. • Don’t drive impaired—whether by cannabis, alcohol, or any combination of substances. • Plan ahead by arranging a rideshare, taxi, or designated driver, especially if planning to consume cannabis during upcoming events like 4/20. The online survey was conducted by DIG Insights from July 5 to July 18, 2024, with 504 Manitoba drivers aged 19 and older. Based on the sample size of n=504 and with a confidence level of 95%, the margin of error for this research is +/- 3%.)

Research Matters: Can Neurons Transmit Light?
Neurons, the cells in brains and spinal cords that make up the central nervous system, communicate by firing electrical pulses. But scientists have found hints that neurons may transmit light as well, which would profoundly change our current understanding of how the nervous system works. Researchers from the University of Rochester have begun an ambitious project to study if living neurons can transmit light through their axons — the long, tail-like nerve fibers of neurons that resemble optical fibers. “There are scientific papers offering indications that light transport could happen in neuron axons, but there’s still not clear experimental evidence,” says the principal investigator, Pablo Postigo, a professor at the university's Institute of Optics. “Scientists have shown that there is ultra-weak photon emission in the brain, but no one understands why the light is there.” If light is at play and scientists can understand why, it could have major implications for medically treating brain diseases and drastically change the way physicians heal the brain. To learn more about Postigo's research, contact him at ppostigo@ur.rochester.edu.

AI-powered model predicts post-concussion injury risk in college athletes
Athletes who suffer a concussion have a serious risk of reinjury after returning to play, but identifying which athletes are most vulnerable has always been a bit of a mystery, until now. Using artificial intelligence (AI), University of Delaware researchers have developed a novel machine learning model that predicts an athlete’s risk of lower-extremity musculoskeletal (MKS) injury after concussion with 95% accuracy. A recent study published in Sports Medicine details the development of the AI model, which builds on previously published research showing that the risk of post-concussion injury doubles, regardless of the sport. The most common post-concussive injuries include sprains, strains, or even broken bones or torn ACLs. “This is due to brain changes we see post-concussion,” said Thomas Buckley, professor of kinesiology and applied physiology at the College of Health Sciences. These brain changes affect athletes’ balance, cognition, and reaction times and can be difficult to detect in standard clinical testing. “Even a minuscule difference in balance, reaction time, or cognitive processing of what’s happening around you can make the difference between getting hurt and not,” Buckley said. How AI is changing injury risk assessment Recognizing the need for enhanced injury reduction risk tools, Buckley collaborated with colleagues in UD’s College of Engineering, Austin Brockmeier, assistant professor of electrical and computer engineering, and César Claros, a fourth-year doctoral student; Wei Qian, associate professor of statistics in the College of Agriculture and Natural Resources; and former KAAP postdoctoral fellow Melissa Anderson, who’s now an assistant professor at Ohio University. To assess injury risk, Brockmeier and Claros developed a comprehensive AI model that analyzes more than 100 variables, including sports and medical histories, concussion type, and pre- and post-concussion cognitive data. “Every athlete is unique, especially across various sports,” said Brockmeier. “Tracking an athlete’s performance over time, rather than relying on absolute values, helps identify disturbances, deviations, or deficits that, when compared to their baseline, may signal an increased risk of injury.” While some sports, such as football, carry higher injury risk, the model revealed that individual factors are just as important as the sport played. “We tested a version of the model that doesn’t have access to the athlete’s sport, and it still accurately predicted injury risk,” Brockmeier said. “This highlights how unique characteristics—not just the inherent risks of a sport—play a critical role in determining the likelihood of future injury,” said Brockmeier. The research, which tracked athletes over two years, also found that the risk of MSK injury post-concussion extends well into the athlete’s return to play. “Common sense would suggest that injuries would occur early in an athlete’s return to play, but that’s simply not true,” said Buckley. “Our research shows that the risk of future injury increases over time as athletes compensate and adapt to small deficits they may not even be aware of.” The next step for Buckey’s Concussion Research Lab is to further collaborate with UD Athletics’ strength and conditioning staff to design real-time interventions that could reduce injury risk. Beyond sports: AI’s potential in aging research The implications of the UD-developed machine-learning model extend far beyond sports. Brockmeier believes the algorithm could be used to predict fall risk in patients with Parkinson’s disease. Claros is also exploring how the injury risk reduction model can be applied to aging research with the Delaware Center for Cognitive Aging. “We want to use brain measurements to investigate whether baseline lifestyle measurements such as weight, BMI, and smoking history are predictive of future mild cognitive impairment or Alzheimer’s disease,” said Claros. To arrange an interview with Buckley, email UD's media relations team at MediaRelations@udel.edu

Trump Holds Firm on Resolving Trade Deficit with China
Dr. Meena Bose, Hofstra University professor of political science, executive dean of the Public Policy and Public Service program, and director of the Kalikow Center for the Study of the American Presidency, was featured on Fox News Radio stations around the country, talking about President Trump’s unwillingness to negotiate with China on tariffs. He said that the United States’ trade deficit with China amounts to more than $1 trillion, and he’s not open to making a deal with them until that surplus is resolved. Dr. Bose appeared on WTVN in Columbus, OH; KFTK in St. Louis, MO; WFRK in Florence, SC; WILS in Lansing, MI; WBAP in Dallas, TX; WJR in Detroit, MI; and WHO Des Moines, IA.

Are test-optional colleges being straight with students when they say the absence of SAT and ACT scores on an application won’t affect a student’s chances of being admitted? “Colleges are not trying to trick or trap applicants,” says Robert Alexander, who oversees the admissions process at the University of Rochester, where he is a vice provost and the dean of enrollment management. “No one is trying to fool anyone into thinking, ‘I don’t have to submit a test score,’ when that test score is secretly make-or-break.” Much more important in any academic assessment, Alexander says, is and always has been the four years of academic performance detailed in an applicant’s high school transcript. He says most colleges, including Rochester, take a deep dive into the transcript to not only consider the student’s grade point average, but also the rigor of the high school and its curriculum and why the student selected certain courses. “Some students are limited by the opportunities offered at their schools,” Alexander says. “In that case, colleges look for what they have done to utilize their resources and push beyond those limitations.” The University of Rochester has a test-optional policy. The average standardized test score of incoming students has been trending upward, in part because the students who are most likely to submit their scores on their applications are those with strong scores. Alexander says prospective students and their families can use the average test scores at the college or university they’re considering as a barometer, but not the arbiter of whether a student will gain acceptance. “I think admissions officers are being as transparent as possible in telling students what they require,” Alexander says. Alexander is an expert in undergraduate admissions and enrollment management who speaks on the subjects to national audiences and whose work has been published in national publications. Click his profile to reach him.