hero image
Alana Epstein - USC Suzanne Dworak-Peck School of Social Work. Los Angeles, CA, US

Alana Epstein Alana Epstein

Adjunct Lecturer Dept. of Adult Mental Health and Wellness | USC Suzanne Dworak-Peck School of Social Work

Los Angeles, CA, UNITED STATES

Health care expert, focusing on the science of cancer and immunotherapy

Areas of Expertise (2)

Cancer Diagnoses Immunotherapy

Industry Expertise (3)

Education/Learning Research Health and Wellness

Social

Articles & Publications (3)

Unraveling the Effect of Immunogenicity on the PK/PD, Efficacy, and Safety of Therapeutic Proteins. Journal Immunology Research

2016

Biologics have emerged as a powerful and diverse class of molecular and cell-based therapies that are capable of replacing enzymes, editing genomes, targeting tumors, and more. As this complex array of tools arises a distinct set of challenges is rarely encountered in the development of small molecule therapies. Biotherapeutics tend to be big, bulky, polar molecules comprised of protein and/or nucleic acids. Compared to their small molecule counterparts, they are fragile, labile, and heterogeneous. Their biodistribution is often limited by hydrophobic barriers which often restrict their administration to either intravenous or subcutaneous entry routes. Additionally, their potential for immunogenicity has proven to be a challenge to developing safe and reliably efficacious drugs. Our discussion will emphasize immunogenicity in the context of therapeutic proteins, a well-known class of biologics. We set out to describe what is known and unknown about the mechanisms underlying the interplay between antigenicity and immune response and their effect on the safety, efficacy, pharmacokinetics, and pharmacodynamics of these therapeutic agents.

view more

Biomarkers Provide Clues to Early Events in the Pathogenesis of Breast Implant-Associated Anaplastic Large Cell Lymphoma Aesthetic Surgery Journal

2016

Almost 200 women worldwide have been diagnosed with breast implant-associated anaplastic large cell lymphoma (BIA-ALCL). The unique location and specific lymphoma type strongly suggest an etio-pathologic link between breast implants and BIA-ALCL. It is postulated that chronic inflammation via bacterial infection may be an etiological factor. BIA-ALCL resembles primary cutaneous ALCL (pcALCL) in morphology, activated T-cell phenotype, and indolent clinical course. Gene expression array analysis, flow cytometry, and immunohistochemistry were used to study pcALCL and BIA-ALCL cell lines. Clinical samples were also studied to characterize transcription factor and cytokine profiles of tumor cells and surrounding lymphocytes. BIA-ALCL and pcALCL were found to have common expression of transcription factors SOCS3, JunB, SATB1, and a cytokine profile suggestive of a Th1 phenotype. Similar patterns were observed in a CD30+ cutaneous lymphoproliferative disorder (LPD). The patterns of cytokine and transcription factor expression suggest that BIA-ALCL is likely to arise from chronic bacterial antigen stimulation of T-cells. Further analysis of cytokine and transcription factor profiles may allow early detection and treatment of BIA-ALCL leading to better prognosis and survival. LEVEL OF EVIDENCE 5: Risk.

view more

Systemic delivery of chTNT-3/CpG immunoconjugates for immunotherapy in murine solid tumor models Cancer Immunology, Immunotherapy

2016

CpG oligodeoxynucleotides (CpG) potently activate the immune system by mimicking microbial DNA. Conjugation of CpG to chTNT-3, an antibody targeting the necrotic centers of tumors, enabled CpG to accumulate in tumors after systemic delivery, where it can activate the immune system in the presence of tumor antigens. CpG chemically conjugated to chTNT-3 (chTNT-3/CpG) were compared to free CpG in their ability to stimulate the immune system in vitro and reduce tumor burden in vivo. In subcutaneous Colon 26 adenocarcinoma and B16-F10 melanoma models in BALB/c and C57BL/6 mice, respectively, chTNT-3/CpG, free CpG, or several different control constructs were administered systemically. Intraperitoneal injections of chTNT-3/CpG delayed tumor growth and improved survival and were comparable to intratumorally administered CpG. Compared to saline-treated mice, chTNT-3/CpG-treated mice had smaller average tumor volumes by as much as 72% in Colon 26-bearing mice and 79% in B16-bearing mice. Systemically delivered free CpG and CpG conjugated to an isotype control antibody did not reduce tumor burden or improve survival. In this study, chTNT-3/CpG retained immunostimulatory activity of the CpG moiety and enabled delivery to tumors. Because systemically administered CpG rapidly clear the body and do not accumulate into tumors, chTNT-3/CpG provide a solution to the limitations observed in preclinical and clinical trials.

view more

Contact