hero image
Alicia Walf - Rensselaer Polytechnic Institute. Troy, NY, US

Alicia Walf Alicia Walf

Senior Lecturer | Rensselaer Polytechnic Institute


Neuroscientist with extensive research into body, brain, and mind relationships related to brain health, social cognition and emotions.

Areas of Expertise (9)

Brain Health





Hormones' Behavioral Effects





Alicia Walf's research interests are fueled by the broad question: Why are there individual differences in stress? This question led her to studying hormones' actions for plasticity in the brain and body across the lifespan. Notably, she found that mechanisms of estradiol in the limbic system for behavioral responses to stress occur through a novel estrogen receptor to promote plasticity, without increasing growth in cancer-prone tissues of the body. She has since refined her pursuit to include further consideration of body, brain, and mind relationships as they relate to memory, perception, social cognition, and emotions. She has found that as much as hormones influence the brain for behavioral outcomes, behavior itself alters the brain, which is key for lasting brain health. An ongoing focus is to understand the contextual variables important for these effects of hormones for behavioral and cognitive processes.

Dr. Walf has taken a cross-species and cross-discipline approach. Similarities across species for stress and hormone effects are important to note as they suggest common mechanisms across mammals, including humans, in the brain and body responses to challenges. Her studies of stress effects and mechanisms are not only confined to the laboratory, but often occur “in the wild.” Some examples of studying individual’s behavioral and cognitive responses to stress in their natural habitats include architectural built environments, artistic installations, interactions with technology, conference rooms, and the classroom.

Her findings about stress for emotional and other cognitive processes drive the varied and creative approaches Dr. Walf brings to the classroom. She incorporates approaches, such as contemplative pedagogy, intergroup dialogue, active and remote learning, with the goal to promote well-being, diversity, equity, and inclusion.



Alicia Walf Publication Alicia Walf Publication




Walf leads group at Smart Geometry, the international architecture meeting


Education (3)

University at Albany, NY: Ph.D., Behavioral Neuroscience

University at Albany, NY: B.A., Psychology

University at Albany, NY: B.A., East Asian Studies

Media Appearances (4)

This Is Why Some People Are Ticklish—and Others Aren’t

MSN.com  online

If you're ticklish, you know that strange mix of pleasure, surprise, and weirdness when someone finds your ticklish spots. But have you noticed that some people aren't ticklish? And some people enjoy being tickled and others who find it miserable? Good news: It's all normal. "As with any sensory experience, people have different levels of sensitivity to touch and tickle," says Alicia Walf, PhD, a senior lecturer in cognitive science at Rensselaer Polytechnic Institute in Troy, New York. ...

view more

7 Ways to Keep Your Brain Smart As You Age

livestrong.com  online


Aging happens, and with it often comes some changes to learning, memory and overall cognitive health. But just like with your physical health, you can give the mind a workout to help mitigate the effects of aging on your brain. "Although aging is a part of life, significant losses in cognitive abilities, such as what occurs with dementia, do not have to be," says Alicia Walf, PhD, a neuroscientist and a senior lecturer in the Department of Cognitive Science at Rensselaer Polytechnic Institute. To keep the brain sharp as we age and even reduce age-related decline in function, we need to increase what's called brain plasticity. "Brain plasticity is a kind of a catch-all term to describe new brain cells being born, even in adulthood, and incorporating themselves into functional circuits in the brain, increasing function and health and connections of existing brain cells," Walf explains.

view more

This Is Your Brain On Anger

Elemental Medium  online


Anger and fear both generate a basic stress response, collectively called fight or flight. Anger makes us want to fight, and fear makes us want to flee. The system is evolutionarily set up to keep us alive, to face the threat of an invading tribe or to run from a tiger. But it can be activated by all kinds of things, says neuroscientist Alicia Walf, PhD, a senior lecturer in cognitive science at Rensselaer Polytechnic Institute.

view more

Finding a Path ... at SmartGeometry 2016

Architect Magazine  print


Alicia Walf, a neuroscientist at Rensselaer Polytechnic Institute, in Troy, N.Y., says that the accessibility of biometric data today means that architecture can become personalized in much the same way as doctors are experimenting with personalized medicines.

view more

Articles (5)

Cognitive behavioral therapy (CBT) for preventing Alzheimer's disease. Behavioural Brain Research

Reid LD, Avens FE, Walf AA.


This review provides the rationale for implementing cognitive behavioral therapy (CBT) for the prevention of Alzheimer’s disease (AD). There are known risk factors associated with the development of AD, some of which may be ameliorated with CBT. We posit that treating the risk factors of inactivity, poor diet, hyposmia and anosmia, sleep disorders and lack of regularly engaged challenging cognitive activity will modify the physiology of the brain sufficiently to avoid the accumulation of excess proteins, including amyloid beta, causal events in the development of AD. Further, the successful treatment of the listed risk factors is well within our technology to do so and, even further, it is cost effective. Also, there is considerable scientific literature to support the proposition that, if implemented by well-established practices, CBT will be effective and will be engaged by those of retirement age. That is, we present a biologically informed CBT for the prevention of the development of AD, i.e., an aspect of applied behavioral neuroscience.

view more

An experimental design framework for the personalization of indoor microclimates through feedback loops between responsive thermal systems and occupant biometrics. International Journal of Architectural Computing

Matalucci, B., Phillips, K., Walf, A.A., Dyson, A., & Draper, J.


How can building technologies accommodate different and often conflicting user preferences without dissolving the social cohesiveness, intrinsic of every architectural intervention? Individual thermal comfort has often been considered a negligible sensorial experience by modern heating and cooling technologies, and is often influenced by large-group norms. Alternatively, we propose that buildings are repositories of indoor microclimates that can be realized to provide personalized comfort, to create healthier environments, and to enhance the attributes of architectural interventions into haptic dimensions. In response, the goal of this study is to characterize an experimental framework that integrates responsive thermal systems with occupants’ direct and indirect experience, which includes stress response and biometric data. A computational model was used up to inform and analyze thermal perception of subjects, and later tested in a responsive physical installation. While results show that thermal comfort assessment is affected by individual differences including cognitive functions and biometrics, further computational efforts are needed to validate biometric indicators. Finally, the implications of personalized built environments are discussed with respect to future technology developments and possibilities of design driven by biometric data.

view more

Progestogens' effects and mechanisms for object recognition memory across the lifespan. Behavioural Brain Research

Walf AA, Koonce CJ, Frye CA.


This review explores the effects of female reproductive hormones, estrogens and progestogens, with a focus on progesterone and allopregnanolone, on object memory. Progesterone and its metabolites, in particular allopregnanolone, exert various effects on both cognitive and non-mnemonic functions in females. The well-known object recognition task is a valuable experimental paradigm that can be used to determine the effects and mechanisms of progestogens for mnemonic effects across the lifespan, which will be discussed herein. In this task there is little test-decay when different objects are used as targets and baseline valance for objects is controlled. This allows repeated testing, within-subjects designs, and longitudinal assessments, which aid understanding of changes in hormonal milieu. Objects are not aversive or food-based, which are hormone-sensitive factors. This review focuses on published data from our laboratory, and others, using the object recognition task in rodents to assess the role and mechanisms of progestogens throughout the lifespan. Improvements in object recognition performance of rodents are often associated with higher hormone levels in the hippocampus and prefrontal cortex during natural cycles, with hormone replacement following ovariectomy in young animals, or with aging. The capacity for reversal of age- and reproductive senescence-related decline in cognitive performance, and changes in neural plasticity that may be dissociated from peripheral effects with such decline, are discussed. The focus here will be on the effects of brain-derived factors, such as the neurosteroid, allopregnanolone, and other hormones, for enhancing object recognition across the lifespan.

view more

Estrogen action: a historic perspective on the implications of considering alternative approaches. Physiology & Behavior

Jensen EV, Jacobson HI, Walf AA, Frye CA.


In the 50 years since the initial reports of a cognate estrogen receptor (ER), much has been learned about the diverse effects and mechanisms of estrogens, such as 17β-estradiol (E2). This expert narrative review briefly summarizes perspectives and/or recent work of the authors, who have been addressing different aspects of estrogen action, but take a common approach of using alternative considerations to gain insight into mechanisms with clinical relevance, and inform future studies, regarding estrogen action. Their “Top Ten” favorite alternatives that are discussed herein are as follows. 1 — E2 has actions by binding to a receptor that do not require its enzymatic conversion. 2 — Using a different strategy for antibody binding could make the estrogen receptor (ER) more discernible. 3 — Blocking ERs, rather than E2 production, may be a useful strategy for breast cancer therapy. 4 — Secretion of α-fetoprotein (AFP), rather than only levels of E2 and/or progesterone, may influence breast cancer risk. 5 — A peptide derived from the active site of AFP can produce the same benefits of the entire endogenous protein in endocrine cancers. 6 — Differential distribution of ER subtypes in the body and brain may underlie specific effects of estrogens. 7 — ERβ may be sufficient for the trophic effects of estrogen in the brain, and ERα may be the primary target of trophic effects in the body. 8 — ERβ may play a role in the trophic effects of androgens, and may also be relevant in the periphery. 9 — Downstream of E2's effects at ERβ, there may be consequences for biosynthesis of progestogens and/or androgens. 10 — Changes in histones and/or other factors, which may be downstream of ERβ, potentially underlie the divergent effects of E2 in the brain and peripheral tissues.

view more

Oestrogen receptor beta is involved in the actions of oestrogens in the brain for affective behaviour, but not trophic effects in peripheral tissues. Journal of Neuroendocrinology

Walf AA.


The steroid, 17β‐oestradiol (E2) has pervasive psychological and physical effects throughout the lifespan. The question arises as to whether there are divergent oestrogen receptor (ER)‐mediated mechanisms for these effects in the central nervous system (CNS) and periphery. This review focuses on results of studies using a whole animal model (i.e. female rats and mice) to investigate the relative effects and mechanisms of oestrogens in the CNS and the periphery. By using this approach, it has been possible to differentiate the enhancing effects of E2 on behavioural processes mediated by the hippocampus, such as affective behaviour, and the trophic effects that increase tumourigenesis and uterine growth. Studies using pharmacological manipulations and knockout mice suggest that a likely mechanism underlying the beneficial effects of E2 for hippocampal function (but not proliferative effects in the body) involves actions at ERβ, changes in cell cycle/division (e.g. cyclin D1) and/or histone modifications. Thus, it may be possible to differentiate the beneficial effects of oestrogens through ERβ, particularly in the CNS, from the negative proliferative effects on peripheral, E2‐sensitive tissues.

view more