Andrew Palmer, Ph.D.

Associate Professor | Ocean Engineering and Marine Sciences Florida Tech

  • Melbourne FL

Dr. Palmer's research interests include eavesdropping on bacterial 'conversations', Martian farming, and cell wall fragment-based signaling.

Contact

Florida Tech

View more experts managed by Florida Tech

Spotlight

3 min

Researchers Seek Understanding of Early Life on Earth Following Chilean Expedition

In a discovery that may further our understanding of the early evolution of life on Earth, a research team, including associate professor Andrew Palmer and master’s student Caitlyn Hubric, identified Chile’s deepest and most northern cold seeps—openings in the ocean floor that emit gases and fluids— about 100 miles off the Chilean coast and thousands of feet below the surface. This most terrestrial of discoveries may also yield insights that could benefit future space exploration, Palmer said. Palmer, who runs the astrobiology and chemical ecology lab at Florida Tech, and Hubric, who has studied with him for the last three years, represented the university on Schmidt Ocean Institute’s (SOI) expedition through the Atacama Trench. The trench is a nearly 5-mile-deep oceanic trench in the eastern Pacific Ocean that has remained at the same latitude for the last 150 million years, suggesting an extremely stable and potentially ancient ecosystem. The trench’s seeps, found at a depth of 2,836 meters (9,304 feet), provide chemical energy for deep sea animals living without sunlight, according to SOI. Seeps like this one can help astrobiologists understand how life developed on Earth and how those survival strategies and chemical conditions might sustain life on other planets. Palmer and Hubric were members of the expedition’s microbiology team and were specifically searching for biosignatures. That meant looking out for novel microbes and chemical signatures, like proteins or carbohydrates, which may have existed in the region for millions of years. The benefits of their research extend beyond life on Earth. They could also shape future space exploration. A big part of why they’re investigating water ecosystems is because of the popularity around Saturn’s moon Enceladus and Jupiter’s Europa, Hubric said. She said it’s not a perfect analog, but it’s close enough that they can look for patterns in how life’s chemical processes might operate at these sites. “We hope that some of the questions we answer here find will help us in future endeavors when we do finally go explore the solar system,” Hubric said. Back on campus after the expedition, which ran from May 24 to June 6, they’ve started working to solve those questions by both identifying molecules that guide the search for life and by understanding the limitations of the instruments that can detect metabolites, or early signatures of life, Palmer said. “If [the instruments] can’t successfully identify traces of life on Earth, where we know there’s lots of life, how are they going to be successful in a place where it’s less likely than a needle in a haystack?” Palmer said. “It’s the bigger question of, what do we need to do in order to be successful in the search for life?” For Palmer and Hubric, research has only just begun. They’ll test water and sediment samples and the filtrate that they’ll remove from their water filters and investigate for microbes of interest. Searching for novel metabolisms will be an even more extensive process, Palmer said. “It’s weird doing something where you won’t be able to see the results for weeks or months,” Palmer said. “This is just the beginning.” Looking to know more about the Schmidt Ocean Institute’s (SOI) expedition through the Atacama Trench and Dr. Palmer's research? Then let us help. Dr. Andrew Palmer is an associate professor of biological sciences at Florida Tech and a go-to expert in the field of Martian farming. He is available to speak with media regarding this and related topics. Simply click on his icon now to arrange an interview.

Andrew Palmer, Ph.D.

2 min

Florida Tech Scientist to Study Deep-Space Agriculture After Planetary Society Grant Award

No matter where humans travel, sustenance remains a necessity. Finding a bite to eat during a visit to New York, for example, is no problem. When the destination is a bit farther away, such as Mars, the options are not as plentiful there or on the long journey to get there. That’s where Florida Tech’s Andrew Palmer comes in. He and other scientists are exploring ways to feed our explorers, and a new competitive grant from the Planetary Society will fund work that examines the two most likely ways to produce food during travel to these far-flung spots: in soil or something like soil, or in water. Palmer and his team were awarded a $50,000 Science and Technology Empowered by the Public (STEP) grant, the Planetary Society recently announced. Their project: “Evaluation of food production systems for lunar and Martian agriculture.” For the next year, they will grow radish microgreens, lettuce and tomatoes in identical environmental conditions with one major exception: one batch will be grown hydroponically, and another will be grown in regolith – like lunar or Martian soil. The aim of the experiment is to characterize and compare the two methods, both of which have merits and shortcomings. “It may be that a combination of these approaches, tailored to the diverse needs of different crops, is the best way to provide sustainable and productive agriculture,” Palmer said. “Until now, there have been no direct comparison studies between hydroponic and regolith-based systems for any crop targeted for space applications. We are excited to address this knowledge gap.” The team, which includes experts in plant physiology and biochemistry as well as space agriculture and systems efficiency analysis, will test their hypothesis that faster growing crops like microgreens will be better suited for hydroponic systems even in the long term, while slower-growing crops like tomatoes may favor a regolith-based production system. Palmer and his co-investigator, Rafael Loureiro from Winston-Salem University, are joined by collaborators J. Travis Hunsucker and Thiara Bento from Florida Tech, Laura E. Fackrell at the Jet Propulsion Laboratory and Jéssica Carneiro Oliveira at Universidade Federal do Estado do Rio de Janeiro, Brazil. Care to delve a little deeper? Palmer and a second STEP grant recipient, Dartmouth College professor Jacob Buffo, spoke to the Planetary Society senior communications advisor Mat Kaplan about their respective projects. The segment with Palmer begins at the 23:57 mark and the piece is linked above. Looking to know more about what it will take to feed our deep-space explorers? Then let us help with your questions and coverage. Dr. Andrew Palmer is an associate professor of biological sciences at Florida Tech and a go-to expert in the field of Martian farming. He is available to speak with media regarding this and related topics. Simply click on his icon now to arrange an interview.

Andrew Palmer, Ph.D.

3 min

#Expert Research: New National Science Foundation and NASA-Funded Research Investigates Martian Soil

Studies have shown crops can grow in simulated Martian regolith. But that faux material, which is similar to soil, lacks the toxic perchlorates that makes plant growth in real Red Planet regolith virtually impossible. New research involving Florida Tech is examining how to make the soil on Mars useful for farming. Andrew Palmer, co-investigator and ocean engineering and marine sciences associate professor, along with Anca Delgado, principal investigator and faculty member at Arizona State University’s Biodesign Swette Center for Environmental Biotechnology, and researchers from the University of Arizona and Arizona State University, are participating in the study, “EFRI ELiS: Bioweathering Dynamics and Ecophysiology of Microbially Catalyzed Soil Genesis of Martian Regolith.” This National Science Foundation and NASA-funded project will use microorganisms from bacteria to remove perchlorates from Martian soil simulants and produce soil organic matter containing organic carbon and inorganic nutrients. Martian regolith contains high concentrations of toxic perchlorate salts that will impede plant cultivation in soil, jeopardizing food security and potentially causing health problems for humans, including cancer. Researchers will look at different bacterial populations and how well they are able to process and break down the perchlorates, as well as what kind of materials they produce when they do. They’ll also look at different temperatures and moisture conditions, as well as in the presence or absence of oxygen. Students in the Palmer Lab will receive the simulants after this process, try to replicate it, and then test how well the perchlorate-free regolith is able to grow plants. A challenge the researchers face is how they remove the toxic salts, as well as if they can remove all of them. Palmer cautioned that the possibility that removing the perchlorates does not necessarily mean the regolith is ready for farming. “You can’t make the cure worse than the disease, so we have to be ending up with regolith on the other side that’s better than when we started,” Palmer said. “We can’t trade perchlorates for some other toxic accumulating compound. Just because we’re removing the perchlorates doesn’t necessarily mean that we’re going to make the regolith better for plants. We might just make it not toxic anymore. How much does it improve is really what we’re trying to figure out.” Even without perchlorates, there are significant challenges to growing crops in Martian soil. While researchers have grown plants in simulated regolith, the regolith is not good for plant growth, as in addition to a lot of salts, it has a high pH and is very fine, which means it can ‘cement’ when wet, suffocating plant roots. Being able to grow in the soil instead of using hydroponics could also provide a more efficient, cost-effective solution. “There is always the option of hydroponic growth of food crops, but with a significant distance to Mars and the lack of readily available water, we need a different kind of plan,” said ASU’s Delgado. “If there is a possibility to grow plants directly in the soil, there are benefits in terms of water utilization and resources to get supplies to Mars.” Some of the microbial solutions the team is proposing could also help with studies of soils on Earth. “The best soils for agriculture on earth, they were taken up decades ago, and so now we’re trying to farm on new land that’s not really meant for agriculture, if you think about it,” Palmer said. “So, as we think about ways to convert it into better soil, I think this research helps teach us how to do that, but it also inspires.” The research will also allow Florida Tech students to get hands-on space agriculture experience. “We’re going to be training the grad students and the undergraduates who are going to be the researchers who take on those new challenges, so I think one of our most important products are going to be the students we train,” Palmer said. “We’ll deliver Mars soil, but we also deliver, I think, a future group of researchers.” If you're a reporter looking to know more about this topic then let us help with your coverage. Dr. Andrew Palmer is an associate professor of biological sciences at Florida Tech and a go-to expert in the field of Martian farming. Andrew is available to speak with media regarding this and related topics. Simply click on his icon now to arrange an interview today.

Andrew Palmer, Ph.D.

Areas of Expertise

Astrobiology
Ocean Engineering
Biomedical
Molecular Biology
Biochemistry
Chemical Engineering
Marine Sciences

About

“Science at the interface of chemistry and biology” is the driving theme of the research in Dr. Andrew Palmer’s lab.

Whether it is developing a plan for growing food on a future Mars colony, deciphering the chemical signals exchanged between living things, or developing new tools to regulate bacterial virulence, his research is at the intersection of the natural sciences. His students are as likely to be in the greenhouse as they are peering under a microscope or sitting in front of a mass spectrometer.

A Florida native, Dr. Palmer grew up in St. Augustine. He received an A.S. from Tallahassee Community College, a B.A. from Florida State University in biochemistry, and a Ph.D. in biomolecular chemistry from Emory University. He then did a National Institutes of Health postdoctoral fellowship at the University of Wisconsin-Madison.

His teaching style reflects his interdisciplinary research program: using the solid foundation of chemistry and physics his students develop to explain concepts of biology. Class discussion and developing communication skills are also key elements of his courses. His hobbies include cooking, home brewing and making coffee.

Research Focus

Eavesdropping on bacterial 'conversations'

Numerous species of bacteria coordinate their behaviors based on population density, a phenomenon known as quorum sensing (QS). QS behaviors include antibiotic resistance, the production of biofilm 'plaques', and the production of virulence factors that can digest the tissues of propsective host organisms. Not surprinsgly, plants and animals have evolved to detect the signals that modulate QS. Using a plant Arabidopsis thaliana and an algae Chlamydomonas reinhardtii as hosts, we are investigating these detection and response pathways.

Cell wall fragment-based signaling

The production of reactive oxygen species like hydrogen peroxide can oxidize phenolics associated with the cell walls of plants to active signaling molecules in a process known as semagenesis. Semagenesis may have substnatial roles in plant growth, defense, and interorganismal communication. Combining elements of biology and chemistry we have begun to monitor these reactions in real-time at the sites on plant tissues where they occur. We are also mapping the molecular response network associated with these signals.

Inducible competition in plants

Plants display distinct growth responses not only to the presence of different species, but also to members of the same and different subspecies. Such complex social behaviors enhance our appreciation of the complexity of plants and is crucial to understanding the interplay between resource competition and plant growth. By bringing together elements of molecular biology, analytical chemistry, and confocal microscopy we are elucidating this complex plant-plant signaling event.

Show All +

Media Assets

Media Appearances

Florida Tech and Heinz grow space tomatoes for ketchup

Tampa Bay Times  

2021-11-20

With the help of 14 graduate and undergraduate students, Andrew Palmer, associate professor of biological sciences at Florida Tech, grew 450 tomato plants in regolith, the loose unconsolidated rock and dust that cover planets like Mars.

View More

Heinz serves up ketchup made from "Martian" tomatoes

New Atlas  

2021-11-09

Thanks to a pilot project by Heinz and a team of researchers led by Andrew Palmer at the Florida Institute of Technology, when astronauts set up outposts on Mars they may be able to make their own ketchup using locally grown tomatoes.

View More

Heinz ‘Marz Edition’ Ketchup Made Possible by Florida Tech Science

Florida Tech News  

2021-11-08

The end result of a two-year collaboration with Heinz (thus the “z” in Mars) and associate professor of biological sciences Andrew Palmer at Florida Tech’s Aldrin Space Institute, this unique prototype condiment is more than a novelty. With one paper submitted for peer review and others to come, it represents the results of one of the largest and longest explorations of the challenges and opportunities for food production on the Red Planet – and closer to home.

View More

Show All +

Education

Emory University

Ph.D.

Biological Chemistry

2008

Florida State University

B.S.

Biochemistry

2001

Social

Selected Articles

Biomass allocation in response to accession recognition in Arabidopsis thaliana depends on nutrient availability and plant age

Plant Signaling & Behavior

2022

View more

Identification of Plant Growth Promoting Bacteria Within Space Crop Production Systems

Frontiers in Astronomy and Space Science

2021

View more

Challenging the agricultural viability of martian regolith simulants

Icarus

2021

View more

Show All +

Languages

  • French