
Barbara Frei
Post-doctoral researcher, Department of Natural Resource Sciences McGill University
- Montreal QC
Conservation biologist, scientific communicator & collaborative researcher. Champion for conservation in a rapidly changing world.
Social
Biography
Industry Expertise
Areas of Expertise
Education
Carleton University
B.Sc. Honours
Biology
2005
McGill University
M.Sc.
Natural Resource Sciences
2009
McGill University
Ph.D.
Natural Resource Sciences
2014
University of Ottawa
Postdoctoral researcher
Biology
2017
Affiliations
- Director McGill Bird Observatory
Languages
- English
- French
- Swiss-German
Media Appearances
Angry bird dive-bombing passersby at Maison Radio-Canada
CBC radio
Commentary on bird territoriality during the breeding season
Snowy owl spotted soaring by Montreal traffic camera
CBC radio
Commentary on the presence of Snowy Owls in the Montreal metropolitan area
Red-headed Woodpecker is a bird of special concern
Northumberland Today print
Article on PhD research in Ontario on the threatened Red-headed Woodpecker
Research Grants
Postdoctoral research scholarship
Fonds de recherche Nature et Technologies
Postdoctoral research scholarship
Articles
Interspecific competition and nest survival of the threatened Red-headed Woodpecker
Journal of OrnithologyThe cavity-nesting Red-headed Woodpecker (Melanerpes erythrocephalus) is a once common, but now threatened, species across most of its range. Although several drivers for the species’ decline have been suggested, few have been quantitatively tested and still little is known of the Red-headed Woodpecker’s breeding ecology. From 2010 to 2011, we monitored 60 Red-headed Woodpecker nests across a variety of habitats in southern Ontario to estimate the species’ nest survival near the northern edge of their range where populations are rapidly declining. We investigated the relevance of a suite of meteorological, biotic, temporal, and habitat-based drivers on woodpecker nesting success. The frequency of European Starlings (Sturnus vulgaris) sightings near active woodpecker nest sites was the strongest factor influencing Red-headed Woodpecker nest survival. Logistic-exposure nest success assuming constant survival (68 %) dropped significantly (to 13 %) when the frequency of Starling sightings was considered. More than a third of nest failures were suspected to be the result of aggressive cavity takeovers by Starlings, and nests with Starlings present were almost four times more likely to fail than nests without. Red-headed Woodpecker nest survival early in the breeding season appeared depressed, perhaps as a result of interference competition with Starlings. Nesting success increased with the availability of snags and dead branches, which may increase foraging opportunities and parental attentiveness at the nest, leading to more effective nest defense. This research is contrary to previous reports that Starlings do not negatively affect North American primary cavity nesters, and demonstrates the importance of considering multiple ecological, temporal, and spatial factors when determining threats for species-at-risk.
Maladaptive Habitat Use of a North American Woodpecker in Population Decline
EthologyRapid anthropogenic habitat changes can lead to non-ideal habitat use by animals, often resulting in lower fitness and population declines. An extreme case of use and fitness mismatch is an ecological trap where habi- tat quality cues are disjointed from the true quality of the habitat. Species primarily associated with anthropogenically altered habitat, such as red-headed woodpeckers (Melanerpes erythrocephalus), may be especially vulnerable to use and fitness mismatch as they encounter novel environ- mental challenges. We investigated multi-scale habitat use and nesting success of red-headed woodpeckers to assess their vulnerability to mis- matches between use and fitness as a result of non-ideal habitat use across multiple scales. We found that habitat characteristics that promote feeding potential such as canopy openness and greater dead limb length appeared paramount and were consistent in use across several spatial scales although reproductive fitness suffered. This contrasts with the assumption that habi- tat use by nesting birds should instead favor predation avoidance at smaller scales to improve reproductive fitness and suggests that maladaptive, food- based habitat use by red-headed woodpeckers in southern Ontario may result in ecological traps for the species. Whether due to poor habitat choices or costly ones in favor of feeding potential, it is vital to consider this behavior in conservation and management plans for this and similar species. We suggest multi-scale habitat use studies that consider fitness outcomes are critical for species-at-risk in human-modified landscapes
Low Fecundity of Red-Headed Woodpeckers (Melanerpes erythrocephalus) at the Northern Edge of the Range
Wilson Journal of OrnithologyThe Red-headed Woodpecker (Melanerpes erythrocephalus) is a threatened bird species undergoing continued population declines across most of its range. Despite the conservation concern, there are few published studies on the species’ fecundity. We examined the nesting phenology, clutch size, and fledging success of Red-headed Woodpecker nests in southern Ontario and northern New York, where population declines are especially pronounced. We calculated the fecundity of the Red-headed Woodpecker populations from fledgling numbers and nest survival estimates. We found that nest phenology and clutch sizes were similar to those reported in other studies for the species. Red-headed Woodpecker nests monitored using video inspection had an unusually low fledging success (39%), and an average fecundity of 0.43 female fledglings per female per year. The fledgling success and fecundity for the monitored Red-headed Woodpecker population was lower than that reported by other published studies on Melanerpes spp., as well as for other genera of woodpeckers. The fecundity was also below the minimum threshold needed to offset mortality for the species, when compared to a majority of minimum fecundity values estimated from the literature. We suggest low fecundity for Red-headed Woodpeckers at the northern edge of their range may be the chronic condition of sink populations, or a more recent phenomenon for small populations approaching local extinction.
https://www.ontario.ca/page/bobolink-and-eastern-meadowlark-recovery-strategy-executive-summary
Ontario Ministry of Natural ResourcesThe Bobolink (Dolichonyx oryzivorus) and Eastern Meadowlark (Sturnella magna) both rely upon grasslands for breeding, have similar breeding distributions in Ontario, often co-occur in the same fields, have similar population trajectories, and face similar threats. Because of these relationships, the two species are represented within a single recovery strategy.
Prior to European settlement in eastern North America, Bobolinks and Eastern Meadowlarks nested in native prairies, savannahs, alvar grasslands, beaver meadows, burned-over areas, and areas cleared for agriculture by First Nations. Although most such habitat was destroyed following European settlement, the two species quickly adopted newly-created surrogate grasslands – primarily pastures and hayfields – as nesting habitat. Indeed, were it not for the creation of these agricultural habitats for livestock, the two species may well have disappeared from large parts of their original range.
Though still common and widespread, the Bobolink and Eastern Meadowlark were recently designated as threatened species in Ontario, primarily as a result of strong population declines that have been occurring in Ontario and across most of their breeding ranges. Population losses in Ontario have been occurring over much of the last half century. Over the most recent 10-year period, it is estimated that the Bobolink population in Ontario has declined by an average annual rate of 4 percent, which corresponds to a cumulative loss of 33 percent. Over the same period, Eastern Meadowlark populations have declined at an average annual rate of 2.9 percent (cumulative loss of 25%).