Barry Elkind

Manager, Technology & Venture Development (Head, Molecular Diagnostics) MaRS Innovation

  • Toronto ON

Commercializing life science technologies in the areas of molecular diagnostics, medical devices and therapeutics

Contact

Media

Social

Biography

Barry holds a B.Sc. from York University, a M.Sc. from the Sackler Faculty of Medicine at Tel Aviv University and a Ph.D. in molecular cell biology from the Weizmann Institute of Science, followed by a postdoctoral fellowship at Yale University in yeast vesicular trafficking.

Barry pursued more applied research at the Hungarian Academy of Science and the National Institutes of Health, where he was a NRC Fellow.

His industry experience includes lead molecular biologist at Ikonisys, a medical device start-up company, and science and technology research analyst for Luminex where he assessed technologies in the molecular diagnostic and research realms gaining regulatory, product development and intellectual property knowledge.

Barry has extensive experience managing international, multi-million dollar, government and industry-funded programs (Ontario Genomic Institute) and projects (The Cystic Fibrosis Gene Modifier Project).

He has published 16 peer-reviewed publications, holds two patents and has delivered talks in various countries. Barry’s interests combine science and business through interaction with diverse stakeholders to bring cool, useful life science projects to market.

Industry Expertise

Biotechnology
Real Estate Dev/Ops
Advanced Medical Equipment
Research

Areas of Expertise

Molecular Cell Biology
Molecular Diagnostics
Life Sciences
Commercialization
Project and Program Management

Education

Weizmann Institute of Science

Ph.D.

Molecular Cell Biology

1995

Tel Aviv University

M.Sc.

Molecular Virology

1988

York University

B.Sc.

Biology

1986

Languages

  • English
  • Hebrew
  • Hungarian

Style

Availability

  • Panelist
  • Workshop Leader
  • Corporate Training

Patents

Homo and Heterodimer Proteins of the Abcg Family, Methods For Detection and Screening Modulators Thereof

United States 20080187935

2005-07-07

The invention relates to methods for screening selective modulators of half transporter proteins of the ABCG family, more closely of ABCG1 and ABCG4. In particular the invention relates to methods for determining whether a substance is a selective activator, an inhibitor or a substrate of an ABCG1 or ABCG4 homodimer or of an ABCG1/ABCG4 heterodimer protein, methods for detection of ABCG1 protein in a biological sample, methods for modulating the function of said proteins, and methods for detecting the presence of and/or quantitating ABCG1/ABCG4 heterodimer activity in a biological sample. Moreover, the invention relates to isolated ABCG1/ABCG4 heterodimer proteins and antibodies selective for ABCG1 or ABCG4. The closely related human ABC half-transporters, ABCG1 and ABCG4, have been suggested to play an important role in cellular lipid/sterol regulation. ABCG1 and ABCG4 and mutants thereof have been expressed and studied by the present inventors in whole cells as well as isolated membrane preparations. A large number of compounds have been screened in this system. Co-expression of the ABCG1 and ABCG4 half transporters resulted in heterodimers.

View more

Articles

Functional ABCG1 expression induces apoptosis in macrophages and other cell types.

Elsevier

2008-10-01

The expression of the ATP-binding cassette transporter ABCG1 is greatly increased in macrophages by cholesterol loading via the activation of the nuclear receptor LXR. Several recent studies demonstrated that ABCG1 expression is associated with increased cholesterol efflux from macrophages to high-density lipoprotein, suggesting an atheroprotective role for this protein. Our present study uncovers an as yet not described cellular function of ABCG1. Here we demonstrate that elevated expression of human ABCG1 is associated with apoptotic cell death in macrophages and also in other cell types. We found that overexpression of the wild type protein results in phosphatidyl serine (PS) translocation, caspase 3 activation, and subsequent cell death, whereas neither the inactive mutant variant of ABCG1 (ABCG1K124M) nor the ABCG2 multidrug transporter had such effect. Induction of ABCG1 expression by LXR activation in Thp1 cells and in human monocyte-derived macrophages was accompanied by a significant increase in the number of apoptotic cells. Thyroxin and benzamil, previously identified inhibitors of ABCG1 function, selectively prevented ABCG1-promoted apoptosis in transfected cells as well as in LXR-induced macrophages. Collectively, our results suggest a causative relationship between ABCG1 function and apoptotic cell death, and may offer new insights into the role of ABCG1 in atherogenesis.

View more

Combined localization and real-time functional studies using a GFP-tagged ABCG2 multidrug transporter

Elsevier

2008-03-14

ABCG2 is a half-transporter which causes multidrug resistance when overexpressed in tumor cells. Availability of combined localization and functional assays would greatly improve cell biology and drug modulation studies for this transporter. Here we demonstrate that an N-terminally GFP-tagged version of the protein (GFP-G2) can be used to directly monitor ABCG2 expression, dimerization, localization and function in living cells. GFP-G2 is fully functional when tested for drug-stimulated ATPase activity, vesicular transport assay, subcellular localization or cell surface epitope conformational changes. By measuring both GFP and Hoechst 33342 dye fluorescence in HEK-293 cells, we provide evidence that a real-time transport assay can be reliably applied to identify ABCG2 substrates, transport modulators, as well as to monitor the cellular functions of this multidrug transporter protein. This approach also avoids the need of cloning, drug selection or other further separation or characterization of the transgene-expressing cells.

View more

Mutational Studies of G553 in TM5 of ABCG2:  A Residue Potentially Involved in Dimerization

American Chemical Society

2006-03-30

ABCG2 is an ATP-binding cassette half-transporter conferring resistance to chemotherapeutic agents such as mitoxantrone, irinotecan, and flavopiridol. With its one transmembrane and one ATP-binding domain, ABCG2 is thought to homodimerize for function. One conserved region potentially involved in dimerization is a three-amino acid sequence in transmembrane segment 5 (residues 552−554). Mutations in the corresponding residues in the Drosophila white protein (an orthologue of ABCG2) are thought to disrupt heterodimerization. We substituted glycine 553 with leucine (G553L) followed by stable transfection in HEK 293 cells. The mutant was not detectable on the cell surface, and markedly reduced protein expression levels were observed by immunoblotting. A deficiency in N-linked glycosylation was suggested by a reduction in molecular mass compared to that of the 72 kDa wild-type ABCG2. Similar results were observed with the G553E mutant. Confocal microscopy demonstrated mostly ER localization of the G553L mutant in HEK 293 cells, even when coexpressed with the wild-type protein. Despite its altered localization, the G553L and G553E mutants were cross-linked using amine-reactive cross-linkers with multiple arm lengths, suggesting that the monomers are in the proximity of each other but are unable to complete normal trafficking. Interestingly, when expressed in Sf9 insect cells, G553L moves to the cell membrane but is unable to hydrolyze ATP or transport the Hoechst dye. Still, when coexpressed, the mutant interferes with the Hoechst transport activity of the wild-type protein. These data show that glycine 553 is important for protein trafficking and are consistent with, but do not yet prove, its involvement in ABCG2 homodimerization.

View more

Show All +