hero image
Daniel Ferris - University of Florida. Gainesville, FL, US

Daniel Ferris

Professor | University of Florida

Gainesville, FL, UNITED STATES

Daniel Ferris studies how humans move, focusing on both neuroscience and biomechanics, including individuals in health and disability.


Daniel Ferris is the Robert W. Adenbaum Professor of Engineering Innovation. His research focuses on the biomechanics and neural control of human locomotion, specifically in regard to human-machine interactions (mechanical and electrical). Daniel's specific projects include mobile brain imaging with high-density electroencephalograph, virtual reality motor training, bionic lower limb prostheses, and robotic lower limb exoskeletons.

Areas of Expertise (8)

Robotic Exoskeletons


Biomechanics of Human Movement

Neural Control

Human-machine Interfaces

Mobile Brain Imaging


Bionic Prostheses

Media Appearances (3)

Facing robot opponents puts table tennis players' brains on high-alert

Science  online


Wearing an electrode-studded cap, a table tennis player stares down an opponent. This is no flesh-and-blood adversary; the robotic metal barrel across the table fires a ball every few seconds. According to a study published today in eNeuro, the player’s brain reacts differently when going up against a human opponent or the cold, calculating skill of a machine.

view more

Forward & Up

UF Herbert Wertheim College of Engineering  tv


The work that we're developing here at The Center for Coastal Solutions is really transferable not only across the state of Florida but across the nation and the world. We're building fundamental capabilities in how we model the watershed, the estuary, and the ocean. Dynamics and this optimization of solutions is also something that is transferable almost anywhere you go on the planet.

view more

Surgical technique improves sensation, control of prosthetic legs

United Press International  online


Researchers at MIT Media Lab have invented the neural interface and communication system that sends movement commands from the central nervous system to a robotic prosthesis. In turn, the limb relays proprioceptive feedback describing movement of the joint back to the central nervous system. "This is groundbreaking," Daniel Ferris, a professor of Engineering Innovation at the University of Florida, who was not involved in the research, said in a press release.

view more


Articles (3)

Electrocortical activity correlated with locomotor adaptation during split-belt treadmill walking

The Journal of Physiology

Noelle A. Jacobsen and Daniel P. Ferris


Locomotor adaptation is crucial for daily gait adjustments to changing environmental demands and obstacle avoidance. Mobile brain imaging with high-density electroencephalography (EEG) now permits quantification of electrocortical dynamics during human locomotion. To determine the brain areas involved in human locomotor adaptation, we recorded high-density EEG from healthy, young adults during split-belt treadmill walking.

view more

Neuromechanical Adaptation to Walking With Electromechanical Ankle Exoskeletons Under Proportional Myoelectric Control

IEEE Open Journal of Engineering in Medicine and Biology

Rachel L. Hybart and Daniel P. Ferris


Objective: To determine if robotic ankle exoskeleton users decrease triceps surae muscle activity when using proportional myoelectric control, we studied healthy young participants walking with commercially available electromechanical ankle exoskeletons (Dephy Exoboot) with a novel controller. The vast majority of robotic lower limb exoskeletons do not have direct neural input from the user which makes adaptation of exoskeleton dynamics based on user intent difficult.

view more

A Human Lower Limb Mechanical Phantom for the Testing of Knee Exoskeletons

IEEE Transactions on Neural Systems and Rehabilitation Engineering

W. Sebastian Barrutia, et. al


The development of assistive lower-limb exoskeletons can be time-consuming. Testing prototype medical devices on vulnerable populations such as children also has safety concerns. Mechanical phantoms replicating the lower-limb kinematics provide an alternative for the fast validation and iteration of exoskeletons. However, most phantoms treat the limbs as rigid bodies and fail to capture soft tissue deformation at the human/exoskeleton interface.

view more





loading image