Daniel Wesson

Associate Professor | Chair University of Florida

  • Gainesville FL

Daniel Wesson is an expert in the sense of smell and how the brain processes sensory information.

Contact

University of Florida

View more experts managed by University of Florida

Biography

Daniel Wesson studies how the brain processes sensory information, including odors, to influence emotions, cognition and decisions. Daniel's lab, the Wesson Lab, explores the neural processing of sensory information in the context of behavior. Daniel's research also involves the neural basis of sensory dysfunction in neurological disorders, including dementias and addiction, wherein sensory processing is aberrant. He is an associate professor in the Department of Pharmacology and Therapeutics in the College of Medicine.

Areas of Expertise

Addiction
Brain Function
Electronic Cigarettes
Sensory Processing
Smell, Learning & Memory

Articles

The roles of rat medial prefrontal and orbitofrontal cortices in relapse to cocaine-seeking: a comparison across methods for identifying neurocircuits

Addiction Neuroscience

Javier R.Mesa, et. al

2022-08-07

A large body of research supports the notion that regions of the rodent frontal cortex regulate reinstatement of cocaine seeking after cessation of intravenous cocaine self-administration. However, earlier studies identifying the roles of medial (mPFC) and orbital prefrontal cortices (OFC) in reinstatement relied on pharmacological inactivation methods, which indiscriminately inhibited cells within a target region. Here, we first review the anatomical borders and pathways of the rat mPFC and OFC. Next, we compare and contrast findings from more recent cocaine seeking and reinstatement studies that used chemogenetics, optogenetics, or advanced tracing to manipulate specific local cell types or input/output projections of the mPFC and OFC subregions.

View more

Self-directed orofacial grooming promotes social attraction in mice via chemosensory communication

Iscience

Yun-FengZhang, et. al

2022-05-10

Self-grooming is a stereotyped behavior displayed by nearly all animals. Among other established functions, self-grooming is implicated in social communication. However, whether self-grooming specifically influences behaviors of nearby individuals has not been directly tested, partly because of the technical challenge of inducing self-grooming in a reliable and temporally controllable manner. We recently found that optogenetic activation of dopamine D3 receptor expressing neurons in the ventral striatal islands of Calleja robustly induces orofacial grooming in mice.

View more

State-dependent olfactory processing in freely behaving mice

Cell reports

Mary R.Schreck, et. al

2022-03-01

Decreased responsiveness to sensory stimuli during sleep is presumably mediated via thalamic gating. Without an obligatory thalamic relay in the olfactory system, the anterior piriform cortex (APC) is suggested to be a gate in anesthetized states. However, olfactory processing in natural sleep states remains undetermined. Here, we simultaneously record local field potentials (LFPs) in hierarchical olfactory regions (olfactory bulb [OB], APC and orbitofrontal cortex) while optogenetically activating olfactory sensory neurons, ensuring consistent peripheral inputs across states in behaving mice.

View more

Show All +

Media

Spotlight

3 min

Study: What makes a smell bad?

You wouldn’t microwave fish around your worst enemy — the smell lingers both in kitchen and memory. It is one few of us like, let alone have positive associations with. But what makes our brains decide a smell is stinky? A new study from UF Health researchers reveals the mechanisms behind how your brain decides you dislike — even loathe — a smell. Or as first author and graduate research fellow Sarah Sniffen puts it: How do odors come to acquire some sort of emotional charge? In many ways, our world capitalizes upon the importance of smells to influence emotions, running the gamut from perfumes to cooking and even grocery store design. “Odors are powerful at driving emotions, and it’s long been thought that the sense of smell is just as powerful, if not more powerful, at driving an emotional response as a picture, a song or any other sensory stimulus,” said senior author Dan Wesson, Ph.D., a professor of pharmacology and therapeutics in the UF College of Medicine and interim director of the Florida Chemical Senses Institute. But until now, researchers have puzzled over what circuitry connects the parts of the brain vital to generating an emotional response with those responsible for smell perception. The team started off with the amygdala, a brain region that curates your emotional responses to sensory stimuli. Although all our senses (sound, sight, taste, touch and smell) interact with this small part of your brain, the olfactory system takes a more direct route to it. “This is, in part, what we mean when we say your sense of smell is your most emotional sense,” Sniffen said. “Yes, smells evoke strong, emotional memories, but the brain’s smell centers are more closely connected with emotional centers like the amygdala.” In the study, researchers looked at mice, who share neurochemical similarities with people. They can learn about odors and categorize them as good or bad. After observing their behavior and analyzing brain activity, the team found two genetically unique brain cell types that allow odors to be assigned into a bucket of good feelings or bad feelings. Initially, the team expected that one cell type would generate a positive emotion to an odor, and another would generate a negative emotion. Instead, the brain’s cellular organization gives the cells the capability of doing either. “It can make an odor positive or negative to you,” Wesson said. “And it all depends upon where that cell type projects in your brain and how it engages with structures in your brain.” But why is knowing more about how we categorize smells important? Well, for starters, smells — and our reactions to them — are a part of life. Sometimes, however, our reactions to them can be outsized, or take on a negative association so strong it disrupts how we live. “We’re constantly breathing in and out and that means that we’re constantly receiving olfactory input,” Sniffen said. “For some people that’s fine, and it doesn’t impact their day-to-day life. They might even think, ‘Oh, odors don’t matter that much.’ But for people who have a heightened response to sensory stimuli, like those with PTSD or anxiety or autism, it’s a really important factor for their day-to-day life.” In the future, the research could help clinicians adjust for heightened sensory response that some people struggle with in their everyday lives, Wesson added. One example? A patient associating a clinic’s smell with transfusions that made them queasy. Based upon the receptor systems in these specific brain pathways, the team members believe they might be able to change those associations. Potentially, medications could suppress some of these pathways’ activity to allow you to overcome stressful and aversive emotional responses. Conversely, these pathways could be activated to restore enjoyment to things that people might have grown indifferent to — like those who lose their appetite from illness. “Emotions in part dictate our quality of life, and we’re learning more about how they arise in our brain,” Wesson said. “Understanding more about how our surroundings can impact our feelings can help us become happier, healthier humans.” This research was supported by funding from the National Institute on Deafness and Other Communication Disorders and the National Institute on Drug Abuse. Sarah Sniffen was supported by a fellowship from the National Institute on Deafness and Other Communication Disorders.

Daniel Wesson