David Chuss, PhD

Professor and Chair of Physics Villanova University

  • Villanova PA

David Chuss, PhD, has worked at NASA Goddard Space Flight Center and studies astronomical polarimetry and magnetic fields.

Contact

Villanova University

View more experts managed by Villanova University

Spotlight

5 min

Rubin Observatory Releases First Images, as The Villanova One Sky Center for Astrophysics Begins Celestial Partnership

If the first few frames are any indicator of a blockbuster movie, hold the 2035 Best Picture Oscar for the Vera C. Rubin Observatory and its ambitious new 10-year project. On June 23, 2025, scientists at the state-of-the-art facility in the mountains of north-central Chile gave the public its first glimpses into the capabilities of its 8.4-meter Simonyi Survey Telescope, equipped with the world’s largest digital camera—a 3.2 megapixel, 6,600-pound behemoth that can photograph the whole southern sky every few nights. Its task is a decade-long lapse record-called the Legacy Survey of Space and Time (LSST). The first shots on that journey have left both the general public and astronomical community in awe, revealing in rich detail a mind-boggling number of galaxies, stars, asteroids and other celestial bodies. “The amount of sky it covers, even in just one image, is unprecedented,” said David Chuss, PhD, chair of the Department of Physics, who viewed the first images with colleagues at an organized watch party. “It’s such high-precision, beautiful detail,” added Kelly Hambleton Prša, PhD, associate professor of Astrophysics and Planetary Sciences. “It’s just mind-blowing.” What Makes Rubin and LSST So Unique? Simply, this revolutionary instrument, embarking on an equally revolutionary initiative, will observe half the sky to a greater depth and clarity than any instrument ever has before. Consider this: "The Cosmic Treasure Chest” image released by Rubin contains 1,185 individual exposures, taken over seven nights. Each one of those individual exposures covers 10 square degrees of night sky, which is about the same as looking up at 45 full moons positioned around one another. It may seem like a small size, but click the image yourself, and zoom in and out. The amount of sky captured in that range—enough to show roughly 10 million galaxies—is astounding. Per the Observatory, “it is the only astronomical tool in existence that can assemble an image this wide and deep so quickly.” “At the end of 10 years, Rubin will have observed 20 billion galaxies, and each night in that time frame it will generate 20 terabytes of data,” Dr. Hambleton Prša said. “And, because Rubin has so many different filters, we get to see the same objects in so many different ways.” According to Dr. Hambleton Prša and Dr. Chuss, the power and precision of the Rubin LSST, combined with the shear area of the sky that will be observed, will allow for an incredibly in-depth study of myriad objects, processes and events in ways nobody has ever studied them before. “For example, in our galaxy, we expect to observe only two supernovae per century,” Dr. Hambleton Prša said. “But we're observing 20 billion galaxies. For someone studying this phenomenon, the number of supernovae that they’re going to observe will be off the charts. It is an exquisite survey.” It will also provide insight into the universe’s oldest and most puzzling enigmas. “Rubin is able to look back into our universe at times when it was much smaller during its expansion and really address some of these incredible mysteries out there, like dark energy,” Dr. Chuss said. “We know the universe is expanding and that this expansion is accelerating. Rubin will trace the history of that acceleration and, from that, provide insight into the physics of the mysterious dark energy that appears to be driving it.” To enhance the technological capabilities of its instrument, scientists were invited to contribute towards the selection of the observing strategy of the telescope. The Rubin team took into consideration continual input from the astrophysics community, separated into what they call “science collaborations.” To achieve this, the Rubin team generated proposed simulations for collecting observations, which the science collaborations then assessed for their specific science goals. “The Rubin team then iterated with the science collaborations, taking into account feedback, to ultimately obtain the best strategy for the largest number of science cases,” Dr. Hambleton Prša said. Dr. Hambleton Prša is the primary contact for the Pulsating Star Subgroup, which is part of the Transients and Variable Stars Science Collaboration, the science collaboration that focuses on objects in the sky that change with time. She was the lead author among 70 co-authors on the roadmap for this science collaboration, underscoring the significant scale of community participation for each of these areas. Joined Under One Sky Dr. Hambleton Prša, Dr. Chuss and other members of the Astrophysics and Planetary Sciences Department and Department of Physics at Villanova have a vested interest in Rubin and the LSST project. In April, the two departments joined forces to launch The Villanova One Sky Center for Astrophysics, co-directed by the two faculty members. With goals to elevate the University's longstanding record of research eminence in astronomy and astrophysics and create opportunities for more students to access the disciplines, the Center partnered with the Rubin Observatory to help realize the mission. Both Villanova and Rubin share a similar vision on expanding access to this broad field of study. Fortuitously, the launch of The Villanova One Sky Center coincided with the initial data released from Rubin. What will result, Dr. Chuss says, will be a “truly awesome impact on both our Center and institution.” Dr. Hambleton Prša will advance her own research of pulsating stars, and Andrej Prša, PhD, professor of Astrophysics and Planetary Science and the primary contact for the Binary Star Subgroup, will broaden his study of short-period binary stars. Joey Neilsen, PhD, associate professor of Physics, will expand his research in black hole astrophysics. Becka Phillipson, PhD, an assistant professor of Physics, who recently led a proposal for Villanova to join the Rubin LSST Discovery Alliance, aims to increase the scope of her study of chaotic variability of compact objects. Dr. Chuss, who generally works on infrared and microwave polarimetry, which is “outside the wavelength ranges of Rubin” is interested in its complementarity with other observations, such as those of the cosmic microwave background—the oldest light in the universe—and the evolution of the large-scale structure of the universe. Subjects, he says, which are “exactly in the wheelhouse for Rubin.” Other faculty members are interested in topics such as how Rubin’s observations may change the knowledge of both the history and structure of our solar system and the population of Milky Way satellite galaxies. That is not to mention, Dr. Hambleton Prša points out, the daily 20 terabytes of data that will become available for students and postdoctoral researchers under their tutelage, who will be heavily involved in its analysis for their own projects and ideas. “This partnership is going to greatly increase our opportunities and elevate our profile,” Dr. Chuss said. “It will make our program even more attractive for faculty, postdocs and students to come and to share their knowledge and expertise. “Together, we will all have access to an incredible movie of this epoch of our universe, and the knowledge and surprises that come with it along the way.”

David Chuss, PhD

Areas of Expertise

Astrophysical Magnetic Fields
Cosmology
Astronomical Polarimetry
Galactic Center
Star Formation

Biography

David Chuss develops instrumentation to study the polarization of long wavelength light from astrophysical phenomenon to learn about the universe. He has worked on projects exploring the cosmic microwave background, which is thermal radiation from the beginning of the universe. Most recently, he led a team that developed a new camera for NASA’s Stratospheric Observatory for Infrared Astronomy that measures the polarization of radiation from clouds, which unveils the magnetic fields that can affect the star formation process. Prior to coming to Villanova, Chuss worked as an astrophysicist at NASA's Goddard Space Flight Center.

Education

Northwestern University

Ph.D.

The Pennsylvania State University

M.S.

Villanova University

B.S.

Select Accomplishments

Goddard Exceptional Achievement for Science

2013

Goddard Special Act Award (CLASS)

2010

Goddard Special Act Award (PIPER)

2009

Show All +

Select Media Appearances

Dazzling New Milky Way Map Shows How Magnetism Shapes Our Galaxy

Scientific American  print

2024-06-25

But a new map of the galactic center and its magnetic field offers scientists an unprecedentedly detailed look into the forces that powered our galaxy’s emergence. Researchers around the world spent four years gathering and combining telescope data that show how interstellar dust across 500 light-years of the Milky Way’s center interacts with the galaxy’s magnetic field.* The resulting map is the first to depict the field with such clarity at this resolution, says the project’s principal investigator, Villanova University physicist David T. Chuss.

Chuss and his team studied space dust using the Stratospheric Observatory for Infrared Astronomy, a NASA telescope that tracked infrared light while mounted in an aircraft flown at 45,000 feet. Magnetic fields cause light waves emitted by dust to orient in particular ways, giving that light a property called polarization—so measuring the polarization can reveal nearby magnetism. Villanova physicist Dylan Paré and his colleagues converted the telescope’s data into segments suitable for visual representation, and Kaitlyn Karpovich, then an undergraduate student, crafted the colorful background using additional telescopes’ data on dust temperature and dispersion.

View More

The Magnetic Heart of the Milky Way

The New York Times  

2024-04-19

About seven stars are born each year in the Milky Way, our home galaxy. They come from dust and to dust they eventually return. Now, a celestial image, an Impressionistic swirl of color in the center of the Milky Way, represents a first step toward understanding the role of those magnetic fields in the cycle of stellar death and rebirth.

The image was produced by David Chuss, a physicist at Villanova University and an international team of astronomers. The project is known as FIREPLACE, for Far-InfraRed Polarimetric Large Area CMZ Exploration. The team’s map reveals previously invisible details in a stretch of the central Milky Way 500 light-years wide.

View More

New Map Reveals Complicated Magnetics of Milky Way’s Inner Core

Forbes  online

2024-03-18

An international Villanova University-led team, funded in part by NASA, used the far infrared telescope aboard NASA and the German Aerospace Center’s now decommissioned SOFIA airborne observatory on nine flights in 2020 and 2021. From there, the team took far infrared observations of the galaxy’s dusty inner regions.

The galactic center is a unique part of our galaxy, the densities are higher, the velocities are faster, and the magnetic fields there are doing things that we don't see in other regions, says team leader David Chuss, chairman of Villanova University’s physics dept. in Pennsylvania.

View More

Show All +

Select Academic Articles

On-sky Performance of the CLASS Q-band Telescope

The Astrophysical Journal

2019

View more

A cryogenic thermal source for detector array characterization

Review of Scientific Instruments

2017

View more

HAWC+/SOFIA Multiwavelength Polarimetric Observations of OMC-1

Cornell University

2018

View more

Show All +