Dennis Whyte

Hitachi America Professor of Engineering, Head, Nuclear Science and Engineering, and Director, Plasma Science and Fusion Center Consulate General of Canada (CTA Boston)

  • Cambridge MA

Dennis Whyte is an expert in fusion research using the magnetic confinement of plasmas for energy production.

Contact

Consulate General of Canada (CTA Boston)

View more experts managed by Consulate General of Canada (CTA Boston)

Social

Biography

Dennis Whyte is a recognized leader in the field of fusion research using the magnetic confinement of plasmas for energy production on a faster, smaller, and more innovative path. He is a Fellow of the American Physical Society, has over 300 publications, and is heavily involved as an educator. He is widely recognized for his themes of innovation and the need for speed and economic viability in fusion. He has served on panels for the National Academies, the U.S. government, and the Royal Society. The core of the MIT fusion project, SPARC, was formed over eight years ago during an NSE design class led by Whyte to challenge assumptions in fusion. Many of the ideas underpinning the high-field approach — including the use of HTS for high-field, demountable magnets, liquid blankets, and ARC — have been conceived of or significantly advanced in these courses.

Industry Expertise

Research

Areas of Expertise

Physics
Boundary Plasma Physics
Magnetic Fustion Energy
Engineering

Education

University of Saskatchewan

B.Eng.

1986

University of Quebec

M.Sc.

1989

University of Quebec

Ph.D.

1993

Multimedia

Selected Media Appearances

Plasma Science and Fusion Center leads new Center of Excellence

MIT News  online

2019-02-25

PSFC Director Dennis Whyte observed that the new center is a recognition of the HEDP division’s excellence. Thanking the team for the exceptional work, under the encouragement of the senior leadership, he said, “Your work is one of the gems of the PSFC. This division produces outstanding, unique science, and with a mission that is critical to national security”...

View More

MIT continues progress toward practical fusion energy

MIT NEWS  online

2019-01-24

At the event, titled “The MIT Fusion Landscape,” speakers explained why fusion power is urgently needed, and described the approach MIT and CFS are taking and how the project is taking shape. According to Dennis Whyte, head of MIT’s Plasma Science and Fusion Center (PSFC), the new project’s aim is “to try to get to fusion energy a lot faster,” by creating a prototype fusion device with a net power output within the next 15 years. This timeframe is necessary to address “the greatest challenge we have now, which is climate change”...

View More

Selected Articles

Edge-localized mode avoidance and pedestal structure in I-mode plasmas

Physics of Plasmas

Walk, J. R., et al.

2014

I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle Pnet/n⎯⎯e, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of Pnet/n⎯⎯e. This is consistent with targets for increased performance in I-mode, elevating pedestal βp and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs, consistent with the observed suppression of large ELMs in I-mode.

View more

Reduction of core turbulence in I-mode plasmas in Alcator C-Mod,

Nuclear Fusion

White, A. E., et al.

2014

In this paper, we report observations of reduced core (0.40 < ρ < 0.95) fluctuations in the edge localized mode (ELM)-free high-confinement regime, I-mode, at Alcator C-Mod (Marmar et al2009 Nucl. Fusion 49 104014). Long wavelength (kθρs < 0.5) density fluctuation levels are observed to decrease from L-mode levels by up to 30% in I-mode, while long wavelength (kθρs < 0.3) electron temperature fluctuation levels are observed to decrease by up to 70% in I-mode. This reduction in core turbulence is correlated with the increases in confinement in I-mode compared to L-mode. As the pedestal temperature increases across the L–I transition, core density fluctuations (0.40 < ρ < 0.95) are reduced prior to the onset of the edge-localized (ρ ~ 0.99–1.0) weakly coherent mode (WCM) and prior to the reduction of low-frequency (ρ ~ 0.99–1.0) turbulence in the edge/pedestal region. This result helps add to our understanding of the dynamics of confinement transitions such as I-mode and H-mode, where changes in edge turbulence are more typically observed to occur prior to changes in core turbulence.

View more

Fusion materials science and technology research opportunities now and during the ITER era

Fusion Engineering and Design

Zinkle, Steven J., et al.

2014

Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the single-effects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

View more

Show All +