Spotlight
Multimedia
Documents:
Photos:
Audio/Podcasts:
Education, Licensure and Certification (3)
Ph.D.: Computer Science, Vanderbilt University 2009
M.S.: Computer Science, Vanderbilt University 2006
B.S.: Computer Science, Wartburg College 2004
Biography
Dr. Derek Riley joined the MSOE faculty in 2016 and is a professor in the Computer Science and Software Engineering Department. He is also program director of MSOE’s Bachelor of Science in Computer Science program, which has a focus in artificial intelligence. In addition to teaching at MSOE, Riley provides consulting services and expert witness services related to machine learning, deep learning, facial recognition, computational modeling, high-performance computing, and other related fields. His areas of expertise include deep learning, machine learning, computer vision, algorithms, process modeling and simulation, Scrum, and mobile computing/programming. He is an NVIDIA DLI Certified Instructor.
Areas of Expertise (10)
Large Language Models, Generative AI
Machine Learning
Deep Learning
Computational Science
Computer Science
Algorithms
High-Performance Computing
Scrum
Software Engineering
RAG LLM
Affiliations (1)
- Association for Computing Machinery (ACM) : Member
Media Appearances (10)
Fake explicit pictures of Taylor Swift cause concern over lack of AI regulation
WDJT - Ch. 58 - CBS tv
2024-01-27
Dr. Derek Riley weighs in on fake explicit pictures of Taylor Swift and cause for concern over lack of AI regulation
Milwaukee tech leaders discuss deepfakes and advancing Artificial Intelligence technology
WDJT - Ch. 58 - CBS tv
2023-12-14
Dr. Derek Riley discusses the latest addition to the world of artificial intelligence known as deepfake models, an extension of deep learning, which creates false videos or images which have been altered to misrepresent a person or situation which has never happened.
Detroit Today: How facial recognition software in criminal investigations can harm communities of color
Detroit Public Radio - WDET 101.9FM radio
2023-08-11
Dr. Derek Riley explains how biases get embedded in AI systems and facial recognition technologies.
Fact check: No, Snapchat filters are not a facial recognition database created by the FBI
USA Today online
2022-10-11
The claim: Snapchat filters are a facial recognition database created by the FBI The use of facial recognition technology has become commonplace, with many people using it on a daily basis to unlock their phones or sort their photos. A recent Facebook post, though, claims a popular photo messaging app uses the technology to collect data for federal law enforcement. “Snapchat filters are a facial recognition database created by the FBI,” reads text included in the Oct. 3 post, which has been shared over 100 times in two days. “You don’t believe me? Google: Patent US9396354.” But the claim is false. ... The technology used by the app doesn't require any private data to be collected, Derek Riley, a computer science professor at the Milwaukee School of Engineering, told USA TODAY. Riley described the patent mentioned in the post as a "big red flag" that the claim was wrong, since it's actually for a privacy-protecting technology. He said there isn't any indication Snapchat is using the technology in the patent.
To Promote 'Stranger Things,' These Businesses Developed an App That Lets You Order a Pizza With Your Mind
Inc. online
2022-06-02
At the start of the fourth season of the popular Netflix series Stranger Things, the character Eleven has lost her telekinetic abilities. But thanks to some small business innovation, viewers can now channel her powers for a vital task: ordering a pizza. Working with ad agency WorkInProgress and content creation company UNIT9, Domino's released a new "mind-ordering" app in partnership. According to Derek Riley, the electrical engineering and computer science program director at Milwaukee School of Engineering, there are a variety of ready-made facial recognition software programs, and adding them to an app isn't significantly more complicated than introducing any other feature.
MSOE professor explains facial recognition technology used to catch riot suspects
WTMJ Ch. 4 tv
2021-01-14
The FBI released pictures of ten more suspects it needs help naming and finding. One of the agency's tools for searching for people is facial recognition technology. Aside from the FBI, the Milwaukee School of Engineering is leading the way with teaching artificial intelligence as part of its computer science degree. To be clear, the school is not working with law enforcement about the events in D.C.
What Makes a Supercomputer Super?
MSOE Marketing online
2020-07-16
What Makes a Supercomputer "Super? Dr. Derek Riley, program director for MSOE's B.S. in computer science degree, explains the differences in configuration between your laptop or desktop computer, and MSOE's GPU-powered supercomputer.
New MSOE Supercomputer Aims To Help Milwaukee With Artificial Intelligence
WUWM
2019-09-13
Computer power and artificial intelligence technology are officially ramping up in Milwaukee — that's with Friday’s opening of the Dwight and Dian Diercks Computational Science Hall at the Milwaukee School of Engineering. A specially-designed supercomputer in the building will be able to help local businesses and community groups with data projects.
MSOE Is Getting a New Supercomputer, Changing the School As We Know It
Milwaukee Magazine
2018-07-06
The computer – it doesn’t have an official name yet, but here’s a vote for Dwight 9000 – will be the fastest in Southeastern Wisconsin, unless someone has built a faster one in secret, according to Derek Riley, director of the electrical engineering and computer science department.
Dr. Derek Riley named computer science program director at MSOE
MSOE
2018-01-30
Derek Riley, Ph.D. has been named program director of the new Bachelor of Science in Computer Science program at Milwaukee School of Engineering. Riley joined the MSOE faculty in 2016 and is an associate professor in the Electrical Engineering and Computer Science Department.
Event and Speaking Appearances (5)
Invited Talk
Wisconsin Technology Association Conference
2019-05-08
AI Education
Wisconsin Technology Council Early Stage Symposium
2019-06-11
Invited Talk
Wisconsin Society of Professional Engineers Discovery Conference
2019-04-30
AI Education
Direct Supply AI Forum
2019-04-03
Keynote Speaker
Werner Electric MSOE Alumni Event
2019-04-03
Selected Publications (6)
An Investigation on Machine Learning Models for the Prediction of Cyanobacteria Growth
Journal of Fundamental and Applied LimnologyGiere, Johannes; Riley, Derek; Nowling, R. J.; McComack, Joshua; Sander, Hedda
2020 Harmful algal blooms, which are a danger to the lives of humans and animals, are caused by a sudden increase in the concentration of cyanobacteria in freshwater lakes. Cyanobacteria concentrations can be reliably measured using chemical and biological indicators, but the measurement process of the indicators is either labor-intensive or very costly. These limitations do not allow the general public to measure concentrations, so local health organizations or departments regularly assume the responsibility of measuring water quality. While computational models exist to predict algal concentrations, the accuracy of these models and need for customization due to varied lake conditions make them generally not yet reliable. We find that common regression-error functions cannot sufficiently evaluate the performance of cyanobacteria prediction models because the occurrence of harmful algal blooms is rare. Therefore, we present a method of forecasting cyanobacteria concentrations in freshwater lakes based on a machine-learning model trained on a dataset from Lake Utah with automatically-measured indicators from lake buoys. We compare several models and find that a support vector machine with a radial basis function kernel for regression reliably forecasts harmful algal blooms using comparatively few and easy-to-obtain input parameters. The special feature of the model is that it exclusively uses variables that can be measured by the general public without great effort and costs, and the amount of data necessary to train such a model is relatively minimal, allowing different models to be trained to accommodate for the nuances of different lakes.
Diurnal vertical migration of cyanobacteria and chlorophyta in eutrophied shallow freshwater lakes
Fundamental and Applied Limnology / Archiv für Hydrobiologie,von Orgies-Rutenberg, M., Rolfes, C., Eckel, T., Quiroz, A., Skalbeck, J., Riley, D., Sander, H.
2017 Circadian rhythms are thought of as means for adaptation helping survival fitness of a species. For algal species associated with harmful algal blooms (HAB) in eutrophied freshwater lakes usually light and nutrient availability, especially phosphate, seem to drive patterns of the vertical migration within the water column. The vertical migration patterns of species associated with HAB in freshwater lakes (Cyanobacteria) should be taken as input parameters for modelling algae. As HAB present a health risk to the public they should be monitored and predicted via simulation models, and the results of the predictions should be shared with the public using familiar tools such as smartphone apps or websites. To gather the data on which the model will be formulated, two shallow freshwater lakes (eutrophic condition: Lake Stadtgraben, Northern Germany, oligotrophic condition: Lake Russo, Wisconsin, USA in temperate climates were selected to serve as models for investigating the vertical migration in different seasonal times under natural conditions. Phosphate concentrations, as well as light and temperature over time in hourly increments at the lake surface and bottom were monitored. In addition the vertical migration pattern of Cyanobacteria and Chlorophyta populations was followed over 24 hrs in spring (May) and fall (August) in order to derive a behavior assumption as input for a model predicting HAB. In Lake Stadtgraben the vertical migration pattern was strongly influenced by light rather than by phosphate availability in spring, as phosphate was readily available at that time in all depths, while temperature was significantly different between the top and -bottom. The vertical migration pattern was dampened in fall season in both, the oligotrophic and the eutrophic lake, while temperature was not significantly different from the top to the bottom. Thus, vertical migration patterns observed may change slightly with season, which will impact on the outcome of simulation models dependent on the time of day and lake depth, at which input parameters such as Chlorophyll-a are measured.
Using Data Mining in Combination with Machine Learning to Enhance Crowdsourcing of a Formal Model of Biodiesel Production
Midwest Instructional Computing SymposiumFischer, M., Riley, D.
2016 Formal modeling, simulation, and analysis of complex systems is valuable because it can provide insights into complex systems that are too expensive or difficult to analyze otherwise. In this work, we present an approach for improving simulation trajectory choices in a Monte Carlo framework using a combination of crowdsourcing, machine learning, and data mining. We apply machine learning to analysis of a formal model of biodiesel production as a method of improving the efficiency of the crowd sourced mobile simulation analysis of the model. Data is collected and data mined in a central server where machine learning is applied and recommendations from the machine learning algorithm are fed back to crowd workers via suggestions on the mobile app. Ultimately, we show that this approach can improve efficiency of optimal safe state identification in the biodiesel model analysis.
Development of a Mobile Phone Application for the Prediction of Harmful Algal Blooms in Inland Lakes
Fundamental and Applied Limnology / Archiv für HydrobiologieGotthold, J.P., Deshmukh, A., Nighojkar, V., Skalbeck, J., Riley, D., Sander, H.
2016 Harmful algal blooms mainly caused by cyanobacteria in freshwater ecosystems often present a health risk to the public within eutrophied shallow lakes due to algal toxins released into the water during the final stage of an algal bloom. Thus, algal growth should be carefully monitored during the summer season, especially in fre- quented recreational areas. Traditionally, water samples must be sent to a lab to analyze the data to predict algal blooms, costing time and money. Models on a smartphone predicting harmful algal blooms from easily measurable parameters could help individuals to take precautionary measures in order to prevent health risks from drinking and bathing in water and help to raise public awareness. In this work we present a mobile smartphone application that generates a prediction of the likelihood of an algal bloom from a variety of easily-measured input parameters that could be obtained by an informed smartphone user with simple instruments. Our model was implemented in an Android mobile phone application using App Inventor. The model we use is based on the Verhulst equation and allows users to enter any of the following measurements to predict and algal bloom: surface temperature, inverse Secchi depth, dissolved oxygen (DO) at the surface, and chlorophyll fluorescence (Chl-a).
Mobile Technologies in Healthcare: Approaches and Architecture
AIMS InternationalMukherjee, M., Chalasani, S., Riley, D.
Accepted 2016
Crowdsourcing Automobile Parking Availability Sensing Using Mobile Phones
UWM Undergraduate Research SymposiumVillalobos, J., Kifle, B., Riley, D., Torrero, J.U.Q.
2015 A lack of reliable knowledge about automobile parking availability in areas such as schools, work, or major cities wastes time, energy, and fuel as people try to find available parking spaces. Real-time parking monitoring phone applications exist, but keeping accurate, reliable parking availability information proves to be a difficult task due to the unreliability of real time information, especially in less densely populated areas. In this paper, we present a parking monitoring system that uses crowdsourcing in combination with mobile phone sensors to provide accurate, reliable real-time parking availability information. We present a study of the use of the application on a university campus to demonstrate its effectiveness.
Social