hero image
Dr. Rosalie Wang - International Federation on Ageing. Toronto, ON, CA

Dr. Rosalie Wang Dr. Rosalie Wang

Assistant Professor of Occupational Science and Occupational Therapy | University of Toronto

Toronto, ON, CANADA

Rosalie Wang is Assistant Professor of Occupational Science and Occupational Therapy at the University of Toronto






loading image loading image





Rosalie Wang is Assistant Professor of Occupational Science and Occupational Therapy at the University of Toronto. She received her BSc. (OT) from the University of British Columbia, Vancouver, Canada, and worked as an Occupational Therapist in Canada and England. Her work experiences span the continuum of care for older adults, including long-term institutional, sub-acute/rehab, acute and community care settings. She has also worked in a seating and wheeled mobility specialist unit and a stroke rehabilitation unit.

Rosalie completed her PhD in the Graduate Department of Rehabilitation Science in collaboration with the Institute of Biomaterials and Biomedical Engineering at the University of Toronto, Toronto, Canada. Her Doctoral thesis examined the use of collision-avoidance technology to enable power wheelchair mobility with long-term care home residents with cognitive impairments. Her research included some of the first clinical studies to explore the use of collision-avoidance technology and multimodal user interfaces to assist navigation in this population. Rosalie completed a CIHR-funded Postdoctoral Fellowship with the Artificial Intelligence and Robotics Team at Toronto Rehabilitation Institute where she worked on developing and clinically evaluating robots for upper limb stroke rehabilitation and assistive robots to help older adults with dementia to complete daily activities.

Areas of Expertise (8)

Long Term Care

Rehabilitation robotics

Assistive Robotics for Dementia

Stroke Rehab

Occupational Therapy


Sub-acute/rehab and Community Care Settings

Continuum of Care for Older Adults

Accomplishments (1)

Age Plus Prize (2014) (professional)

Dr Rosalie Wang was honoured with the Age Plus Prize in January 2014.

Education (1)

University of Toronto: PhD, Rehabilitation Science, Biomedical Engineering

Dr Wang’s doctoral thesis examined the use of collision-avoidance technology to enable power wheelchair mobility with long-term care home residents with cognitive impairments.

Affiliations (1)

  • Toronto Rehabilitation Institute : Affiliate Scientist

Languages (1)

  • English

Media Appearances (1)

Technology to help adults age in place just a few years away

The Toronto Star  online


"It’s a scene reminiscent of the The Jetsons. A robot wheels around the room offering helpful advice, including a reminder to go to the bathroom.” Dr Rosalie Wang is referenced in this article by the Toronto Star.

Media Appearance Image

view more

Event Appearances (1)

SWAT: Smart Wheelchairs for Training and Assessment of Older Adults

Presenter  University of Toronto


Featured Articles (5)

Speech Interaction with Personal Assistive Robots Supporting Aging at Home for Individuals with Alzheimer’s Disease

ACM Transactions on Accessible Computing

May 2015 Increases in the prevalence of dementia and Alzheimer's disease (AD) are a growing challenge in many nations where healthcare infrastructures are ill-prepared for the upcoming demand for personal caregiving. To help individuals with AD live at home for longer, we are developing a mobile robot, called ED, intended to assist with activities of daily living through visual monitoring and verbal prompts in cases of difficulty. In a series of experiments, we study speech-based interactions between ED and each of 10 older adults with AD as the latter complete daily tasks in a simulated home environment. Traditional automatic speech recognition is evaluated in this environment, along with rates of verbal behaviors that indicate confusion or trouble with the conversation. Analysis reveals that speech recognition remains a challenge in this setup, especially during household tasks with individuals with AD. Across the verbal behaviors that indicate confusion, older adults with AD are very likely to simply ignore the robot, which accounts for over 40% of all such behaviors when interacting with the robot. This work provides a baseline assessment of the types of technical and communicative challenges that will need to be overcome for robots to be used effectively in the home for speech-based assistance with daily living. Speech Interaction with Personal Assistive Robots Supporting Aging at Home for Individuals with Alzheimer’s Disease

view more

Evaluation of an intelligent wheelchair system for older adults with cognitive impairments

Journal of NeuroEngineering and Rehabilitation

7 August 2013 BACKGROUND Older adults are the most prevalent wheelchair users in Canada. Yet, cognitive impairments may prevent an older adult from being allowed to use a powered wheelchair due to safety and usability concerns. To address this issue, an add-on Intelligent Wheelchair System (IWS) was developed to help older adults with cognitive impairments drive a powered wheelchair safely and effectively. When attached to a powered wheelchair, the IWS adds a vision-based anti-collision feature that prevents the wheelchair from hitting obstacles and a navigation assistance feature that plays audio prompts to help users manoeuvre around obstacles. METHODS A two stage evaluation was conducted to test the efficacy of the IWS. Stage One: Environment of Use – the IWS’s anti-collision and navigation features were evaluated against objects found in a long-term care facility. Six different collision scenarios (wall, walker, cane, no object, moving and stationary person) and three different navigation scenarios (object on left, object on right, and no object) were performed. Signal detection theory was used to categorize the response of the system in each scenario. Stage Two: User Trials – single-subject research design was used to evaluate the impact of the IWS on older adults with cognitive impairment. Participants were asked to drive a powered wheelchair through a structured obstacle course in two phases: 1) with the IWS and 2) without the IWS. Measurements of safety and usability were taken and compared between the two phases. Visual analysis and phase averages were used to analyze the single-subject data. RESULTS Stage One: The IWS performed correctly for all environmental anti-collision and navigation scenarios. Stage Two: Two participants completed the trials. The IWS was able to limit the number of collisions that occurred with a powered wheelchair and lower the perceived workload for driving a powered wheelchair. However, the objective performance (time to complete course) of users navigating their environment did not improve with the IWS. CONCLUSION This study shows the efficacy of the IWS in performing with a potential environment of use, and benefiting members of its desired user population to increase safety and lower perceived demands of powered wheelchair driving.

view more

Power mobility with collision avoidance for older adults: User, caregiver, and prescriber perspectives

Journal of Rehabilitation Research and Development

2013 Collision avoidance technology has the capacity to facilitate safer mobility among older power mobility users with physical, sensory, and cognitive impairments, thus enabling independence for more users. Little is known about consumers’ perceptions of collision avoidance. This article draws on inter- views (29 users, 5 caregivers, and 10 prescribers) to examine views on design and utilization of this technology. Data analysis identified three themes: “useful situations or contexts,” “tech- nology design issues and real-life application,” and “appropri- ateness of collision avoidance technology for a variety of users.” Findings support ongoing development of collision avoidance for older adult users. The majority of participants supported the technology and felt that it might benefit current users and users with visual impairments, but might be unsuit- able for people with significant cognitive impairments. Some participants voiced concerns regarding the risk for injury with power mobility use and some identified situations where colli- sion avoidance might be beneficial (driving backward, avoiding dynamic obstacles, negotiating outdoor barriers, and learning power mobility use). Design issues include the need for context awareness, reliability, and user interface specifications. User desire to maintain driving autonomy supports development of collaboratively controlled systems. This research lays the groundwork for future development by illustrating consumer requirements for this technology.

view more

Evaluation of a Contact Sensor Skirt for an Anti-Collision Power Wheelchair for Older Adult Nursing Home Residents With Dementia: Safety and Mobility

Assistive Technology: The Official Journal of RESNA

9 September 2011 We studied an anti-collision power wheelchair's ability to enable safe, independent mobility in nursing home residents with dementia. The device had a contact sensor skirt that compensated for drivers' absent or delayed responses to obstacles. Safety observations were tracked during device use. In six single-subject studies, distances traveled by residents in manual and anti-collision wheelchairs were compared. Two residents could use the device: One resident's mobility and well-being improved; the other thought it was unhelpful. Another resident with potential for use did not like its usability, speed, and appearance. For two other residents, the device did not compensate for decreased initiation, motor planning, and awareness of obstacles above the sensors. Another resident was withdrawn because of verbal aggression. Interviews and focus groups revealed the device's usefulness. Perceptions of safety were mixed. Further work should improve environmental coverage, sensor skirt reliability, and safety; match technology to the needs of a wider range of residents; and enhance usability, functionality, and acceptance.

view more

Power Mobility for a Nursing Home Resident With Dementia

American Journal of Occupational Therapy

2009 OBJECTIVE This case study describes an occupational therapy intervention to increase the self-mobility and social participation of a nursing home resident with dementia using a power wheelchair equipped with a collision-prevention system. METHOD We used an exploratory case study design. Data sources included the medical record, standardized assessments, interviews, observations of daily activities, and a driving log. RESULTS During driving sessions, changes in affect such as smiling and attempts to socialize were noted. The resident required ongoing prompting to operate the modified power wheelchair. CONCLUSION The resident was unable to achieve self-mobility with an intervention involving a modified power wheelchair. However, this study demonstrates that even supervised mobility can have a positive impact on affect and social participation. Observations from this study are being applied to the design and testing of the next generation of power wheelchairs intended for use by nursing home residents with dementia.

view more