hero image
Gregg Fields, Ph.D. - Florida Atlantic University. Boca Raton, FL, US

Gregg Fields, Ph.D. Gregg Fields, Ph.D.

Chair of the Department of Chemistry and Biochemistry | Florida Atlantic University


Gregg Fields uses chemistry to answer biological questions, many of which assist in the diagnosis and treatment of major diseases.






FAU Scientist Gregg Fields, Ph.D.: The Search for Novel Cancer Inhibitors FAU Faculty Vignette – Gregg Fields, Ph.D.




Gregg Fields applies chemistry in novel ways to answer important biological questions, many of which assist in the diagnosis and treatment of major diseases, such as multiple sclerosis, arthritis and cancer.

Fields is a fellow of the National Academy of Inventors and a fellow of the American Association for the Advancement of Science. He is a renowned researcher who holds six U.S. patents and has one application being reviewed. The technology developed by Fields has resulted in three commercial products, currently sold by five different companies. He has authored or coauthored more than 260 scientific publications and has presented more than 190 invited lectures.

Areas of Expertise (7)

Extracellular Matrix Biochemistry

Matrix Metalloproteinase


Drug Discovery

Protein Biochemistry

Chemical Biology

Solid Phase Synthesis

Accomplishments (7)

Elected Fellow, American Association for the Advancement of Science (AAAS)


Distinguished Chair of Metalloproteinase and Multiple Sclerosis Research, TPIMS


Elected Fellow, National Academy of Inventors


Arthritis & Chronic Pain Research Institute Lecturer, University of Florence, Italy


National Institutes of Health Research Career Development Award


Association of Biomolecular Resource Facilities Excellence Award in Peptide Synthesis Research


McKnight-Land Grant Professorship

University of Minnesota, 1993-1995

Education (3)

University of California, San Francisco - School of Medicine: Postdoctoral Scholar, Pharmaceutical Chemistry 1991

Florida State University: Ph.D., Chemistry 1988

University of Florida: B.S., Chemistry 1982

Affiliations (5)

  • American Chemical Society : Member
  • International Journal of Peptide Research and Therapeutics : Editor-In-Chief
  • Biopolymers (Peptide Science) : Editorial Board
  • American Association for the Advancement of Science : Member
  • Center for Molecular Biology & Biotechnology, FAU : Director

Selected Media Appearances (2)

FAU Professor Gregg Fields Named NAI Fellow

University Press  online


Gregg Fields, the chair for FAU’s Department of Chemistry and Biochemistry and the director of the Center of Molecular Biology and Biotechnology, has just been named a National Academy of Inventors Fellow. The NAI Fellows program has “414 Fellows worldwide representing more than 150 prestigious universities and governmental and non-profit research institutions,” as stated on their website. All of these inventors have patents – at least one is required for nomination – with the United States Patent and Trademark Office, and together the 414 Fellows amass nearly 14,000 patents. Fields will be joining the likes of Jay S. Walker, founder of Priceline and Curtis Carlson, president and CEO of SRI International.

view more

UT Health Science Center Pockets $11.6M to Study Heart Failure Markers

Genetic Engineering & Biotechnology News  online


Goal is to identify extracellular matrix peptides that can be used as predictors. A blood test to diagnose which heart attack survivors will suffer heart failure is the goal of a new five-year, $11.6 million contract to the UT Health Science Center San Antonio (UTSA) from the National Heart, Lung, and Blood Institute (NHLBI).

view more

Selected Articles (3)

Matrix Metalloproteinase Inhibition by Heterotrimeric Triple‐Helical Peptide Transition State Analogues

Wiley Online Library

Dr. Manishabrata Bhowmick Roma Stawikowska Dorota Tokmina‐Roszyk Prof. Gregg B. Fields

2015 Matrix metalloproteinases (MMPs) have been implicated in numerous pathologies. An overall lack of selectivity has rendered active‐site‐targeted MMP inhibitors problematic. The present study describes MMP inhibitors that function by binding both secondary binding sites (exosites) and the active site. Heterotrimeric triple‐helical peptide transition‐state analogue inhibitors (THPIs) were assembled utilizing click chemistry. Three different heterotrimers were constructed, allowing for the inhibitory phosphinate moiety to be present uniquely in the leading, middle, or trailing strand of the triple helix. All heterotrimeric constructs had sufficient thermally stability to warrant analysis as inhibitors. The heterotrimeric THPIs were effective against MMP‐13 and MT1‐MMP, with Ki values spanning 100–400 nM. Unlike homotrimeric THPIs, the heterotrimeric THPIs offered complete selectivity between MT1‐MMP and MMP‐1. Exosite‐based approaches such as this provide inhibitors with desired MMP selectivities.

view more

Novel Pyrrolidine Diketopiperazines Selectively Inhibit Melanoma Cells via Induction of Late-Onset Apoptosis

Journal of Medicinal Chemistry

Lillian Onwuha-Ekpete, Lisa Tack, Anna Knapinska, Lyndsay Smith, Gaurav Kaushik, Travis LaVoi, Marc Giulianotti, Richard A. Houghten, Gregg B. Fields, and Dmitriy Minond

2014 A common liability of cancer drugs is toxicity to noncancerous cells. Thus, molecules are needed that are potent toward cancer cells while sparing healthy cells. The cost of traditional cell-based HTS is dictated by the library size, which is typically in the hundreds of thousands of individual compounds. Mixture-based combinatorial libraries offer a cost-effective alternative to single-compound libraries while eliminating the need for molecular target validation. Presently, lung cancer and melanoma cells were screened in parallel with healthy cells using a mixture-based library. A novel class of compounds was discovered that selectively inhibited melanoma cell growth via apoptosis with submicromolar potency while sparing healthy cells. Additionally, the cost of screening and biological follow-up experiments was significantly lower than in typical HTS. Our findings suggest that mixture-based phenotypic HTS can significantly reduce cost and hit-to-lead time while yielding novel compounds with promising pharmacology.

view more

Structural Basis for Matrix Metalloproteinase 1-Catalyzed Collagenolysis

Journal of the American Chemical Society

Ivano Bertini, Marco Fragai, Claudio Luchinat, Maxime Melikian, Mirco Toccafondi, Janelle L. Lauer, and Gregg B. Fields

2011 The proteolysis of collagen triple-helical structure (collagenolysis) is a poorly understood yet critical physiological process. Presently, matrix metalloproteinase 1 (MMP-1) and collagen triple-helical peptide models have been utilized to characterize the events and calculate the energetics of collagenolysis via NMR spectroscopic analysis of 12 enzyme–substrate complexes. The triple-helix is bound initially by the MMP-1 hemopexin-like (HPX) domain via a four amino acid stretch (analogous to type I collagen residues 782–785). The triple-helix is then presented to the MMP-1 catalytic (CAT) domain in a distinct orientation. The HPX and CAT domains are rotated with respect to one another compared with the X-ray “closed” conformation of MMP-1. Back-rotation of the CAT and HPX domains to the X-ray closed conformation releases one chain out of the triple-helix, and this chain is properly positioned in the CAT domain active site for subsequent hydrolysis. The aforementioned steps provide a detailed, experimentally derived, and energetically favorable collagenolytic mechanism, as well as significant insight into the roles of distinct domains in extracellular protease function.

view more