Heavy Heparin: A Stable Isotope‐Enriched, Chemoenzymatically‐Synthesized, Poly‐Component Drug
Angewandte ChemieBrady F Cress, Ujjwal Bhaskar, Deepika Vaidyanathan, Asher Williams, Chao Cai, Xinyue Liu, Li Fu, Vandhana M-Chari, Fuming Zhang, Shaker A Mousa, Jonathan S Dordick, Mattheos AG Koffas, Robert J Linhardt
2019
Heparin is a highly sulfated, complex polysaccharide and widely used anticoagulant pharmaceutical. In this work, we chemoenzymatically synthesized perdeuteroheparin from biosynthetically enriched heparosan precursor obtained from microbial culture in deuterated medium. Chemical de‐N‐acetylation, chemical N‐sulfation, enzymatic epimerization, and enzymatic sulfation with recombinant heparin biosynthetic enzymes afforded perdeuteroheparin comparable to pharmaceutical heparin. A series of applications for heavy heparin and its heavy biosynthetic intermediates are demonstrated, including generation of stable isotope labeled disaccharide standards, development of a non‐radioactive NMR assay for glucuronosyl‐C5‐epimerase, and background‐free quantification of in vivo half‐life following administration to rabbits. We anticipate that this approach can be extended to produce other isotope‐enriched glycosaminoglycans.
View more
Remodeling of Glycosaminoglycans During Differentiation of Adult Human Bone Mesenchymal Stromal Cells Toward Hepatocytes
Stem Cells and DevelopmentPaiyz E. Mikael, Charles Willard, Aurvan Koyee, Charmaine-Grace Barlao, Xinyue Liu, Xiaorui Han, Yilan Ouyang, Ke Xia, Robert J. Linhardt, and Jonathan S. Dordick
2019
There is a critical need to generate functional hepatocytes to aid in liver repair and regeneration upon availability of a renewable, and potentially personalized, source of human hepatocytes (hHEP). Currently, the vast majority of primary hHEP are obtained from human tissue through cadavers. Recent advances in stem cell differentiation have opened up the possibility to obtain fully functional hepatocytes from embryonic or induced pluripotent stem cells, or adult stem cells. With respect to the latter, human bone marrow mesenchymal stromal cells (hBMSCs) can serve as a source of autogenetic and allogenic multipotent stem cells for liver repair and regeneration. A major aspect of hBMSC differentiation is the extracellular matrix (ECM) composition and, in particular, the role of glycosaminoglycans (GAGs) in the differentiation process. In this study, we examine the influence of four distinct culture conditions/protocols (T1–T4) on GAG composition and hepatic markers. α-Fetoprotein and hepatocyte nuclear factor-4α were expressed continually over 21 days of differentiation, as indicated by real time quantitative PCR analysis, while albumin (ALB) expression did not begin until day 21. Hepatocyte growth factor (HGF) appears to be more effective than activin A in promoting hepatic-like cells through the mesenchymal–epithelial transition, perhaps due to the former binding to the HGF receptor to form a unique complex that diversifies the biological functions of HGF. Of the four protocols tested, uniform hepatocyte-like morphological changes, ALB secretion, and glycogen storage were found to be highest with protocol T2, which involves both early- and late-stage combinations of growth factors. The total GAG profile of the hBMSC ECM is rich in heparan sulfate (HS) and hyaluronan, both of which fluctuate during differentiation. The GAG profile of primary hHEP showed an HS-rich ECM, and thus, it may be possible to guide hBMSC differentiation to more mature hepatocytes by controlling the GAG profile expressed by differentiating cells.
View more
Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition
bioRxivPaul S Kwon, Shaokang Ren, Seok-Joon Kwon, Megan E Kizer, Lili Kuo, Feng Zhou, Fuming Zhang, Domyoung Kim, Keith Fraser, Laura D Kramer, Nadrian C Seeman, Jonathan S Dordick, Robert J Linhardt, Jie Chao, Xing Wang
2019
DNA, when folded into nanostructures of customizable shapes, is capable of spacing and arranging external ligands in a desired geometric pattern with nanometer-precision. This allows DNA to serve as an excellent, biocompatible scaffold for complex spatial pattern-recognizing displays. In this report, we demonstrate that a templated designer DNA nanostructure achieves multi-ligand display with precise spatial pattern-recognition, representing a unique strategy in synthesizing potent viral sensors and inhibitors. Specifically, a star-shaped DNA architecture, carrying five molecular beacon-like motifs, was constructed to display ten dengue virus envelope protein domain-III (ED3)-binding aptamers into a 2D pattern precisely matching the pentagonal arrangement of ED3 clusters on the dengue viral surface. The resulting spatial pattern recognition and multivalent interactions achieve high dengue-binding avidity, conferring direct, highly-sensitive, facile, low-cost, and rapid sensing as well as potent viral inhibition capability. Our molecular-platform design strategy could be adapted to detect and combat other disease-causing pathogens, including bacteria and microbial-toxins, by generating the requisite ligand patterns on customized DNA nanoarchitectures.
View more