hero image
Krzysztof Matyjaszewski - Carnegie Mellon University. Pittsburgh, PA, US

Krzysztof Matyjaszewski

University Professor | Carnegie Mellon University

Pittsburgh, PA, UNITED STATES

Krzysztof Matyjaszewski is is one of the leading educators of polymer chemistry.

Biography

One of the leading educators in the field of polymer chemistry, Krzysztof (Kris) Matyjaszewski is perhaps best known for the discovery of atom transfer radical polymerization (ATRP), a novel method of polymer synthesis that has revolutionized the way macromolecules are made. As head of the Department of Chemistry, Matyjaszewski formed a research consortium with various industrial corporations to expand the understanding of controlled radical polymerization, including ATRP, and accelerate the transfer of this technology to different commercial applications. A second consortium, formed under his leadership in 2001, continues and expands these efforts, training university and industrial scientists in procedures for responsive polymeric material development. Over 60 companies from Europe, Asia and North America have been members of these consortia.

Areas of Expertise (5)

Atom Transfer Radical Polymerization (ATRP)

Polymer Chemistry

Polymer Synthesis

Macromolecules

Responsive Polymeric Material Development

Media Appearances (3)

Harnessing the building blocks of polymer recycling

Phys.org  online

2022-11-01

An alternate route toward a more sustainable polymer industry is to increase the service lifetime of polymers. An intriguing new concept is to impart the ability to "self-heal" from structural damage. Michael Bockstaller, professor of materials science and engineering at Carnegie Mellon University Materials Science and Engineering, in collaboration with Krzysztof Matyjaszewski, professor of chemistry, has discovered that the binding of copolymers on the surface of nanoparticles that are already used in industrial manufacturing provides an economic and scalable route toward self-healing polymers with increased strength and toughness.

view more

Open-air performance for atom transfer radical polymerisation

Chemistry World  online

2020-08-26

Researchers in the US have developed an atom transfer radical polymerisation (ATRP) process that is fully tolerant of oxygen. It will remove the need for specialised equipment and allow users to perform ATRP in both water and organic solvents in an open reaction vessel.

view more

In situ with Krzysztof Matyjaszewski

Chemistry World  online

2020-01-17

Krzysztof Matyjaszewski is the JC Warner professor of the natural sciences at Carnegie Mellon University in the US. He developed atom transfer radical polymerisation in 1994, a method that is now in wide use throughout the world to control polymerisation. He was talking to Patrick Walter at Iupac’s 47th general assembly in Paris

view more

Media

Publications:

Krzysztof Matyjaszewski Publication Krzysztof Matyjaszewski Publication Krzysztof Matyjaszewski Publication Krzysztof Matyjaszewski Publication

Documents:

Photos:

loading image

Audio/Podcasts:

Industry Expertise (1)

Chemicals

Accomplishments (5)

National Academy of Sciences Award in Chemical Sciences (professional)

2023

Grand Prix de la Fondation de la Maison de la Chimie (professional)

2021

Benjamin Franklin Medal in Chemistry (professional)

2017

Medema Lecture Award (Polymer Technology Netherlands) (professional)

2017

International Dreyfus Prize in the Chemical Sciences (professional)

2015

Education (3)

Polish Academy of Sciences: Ph.D., Chemistry

Technical University of Moscow: M.S., Chemistry

Technical University of Moscow: B.S., Chemistry

Articles (5)

Fast Bulk Depolymerization of Polymethacrylates by ATRP

ACS Macro Letters

2023 Fast bulk depolymerization of poly(n-butyl methacrylate) and poly(methyl methacrylate), prepared by atom transfer radical polymerization (ATRP), is reported in the temperature range between 150 and 230 °C. Depolymerization of Cl-terminated polymethacrylates was catalyzed by a CuCl2/TPMA complex (0.022 or 0.22 equiv vs P-Cl) and was studied using TGA, also under isothermal conditions. Relatively rapid 5–20 min depolymerization was observed at 230 and 180 °C. The preparative scale reactions were carried out using a short-path distillation setup with up to 84% depolymerization within 15 min at 230 °C.

view more

Synthesis of Hairy Nanoparticles

Hairy Nanoparticles: From Synthesis to Applications

2023 Hairy nanoparticles present a novel platform for the fabrication of hybrid materials with tailored structures and properties. The particular properties of hairy nanoparticles are enabled by the deliberate precision modification of nanoparticle surfaces with polymer chains. Methods based on surface‐initiated controlled radical polymerization (SI‐CRP) have become the most powerful synthetic tool to facilitate the synthesis of hairy nanoparticles. This chapter provides a comprehensive survey of the progress and recent advances in the synthesis of hairy nanoparticles by controlled radical polymerization (CRP) and their characterization.

view more

Highly Conductive Polyoxanorbornene‐Based Polymer Electrolyte for Lithium‐Metal Batteries

Advanced Science

2023 This present study illustrates the synthesis and preparation of polyoxanorbornene‐based bottlebrush polymers with poly(ethylene oxide) (PEO) side chains by ring‐opening metathesis polymerization for solid polymer electrolytes (SPE). In addition to the conductive PEO side chains, the polyoxanorbornene backbones may act as another ion conductor to further promote Li‐ion movement within the SPE matrix. These results suggest that these bottlebrush polymer electrolytes provide impressively high ionic conductivity of 7.12 × 10−4 S cm−1 at room temperature and excellent electrochemical performance, including high‐rate capabilities and cycling stability when paired with a Li metal anode and a LiFePO4 cathode.

view more

Oxygen Tolerance during Surface-Initiated Photo-ATRP: Tips and Tricks for Making Brushes under Environmental Conditions

ACS Macro Letters

2023 Achieving tolerance toward oxygen during surface-initiated reversible deactivation radical polymerization (SI-RDRP) holds the potential to translate the fabrication of polymer brush-coatings into upscalable and technologically relevant processes for functionalizing materials. While focusing on surface-initiated photoinduced atom transfer radical polymerization (SI-photoATRP), we demonstrate that a judicious tuning of the composition of reaction mixtures and the adjustment of the polymerization setup enable to maximize the compatibility of this grafting technique toward environmental conditions. Typically, the presence of O2 in the polymerization medium limits the attainable thickness of polymer brushes and causes the occurrence of “edge effects”, i.e., areas at the substrates’ edges where continuous oxygen diffusion from the surrounding environment inhibits brush growth.

view more

Tribochemically Controlled Atom Transfer Radical Polymerization Enabled by Contact Electrification

Angewandte Chemie International Edition

2023 Traditional mechanochemically controlled reversible‐deactivation radical polymerization (RDRP) utilizes ultrasound or ball milling to regenerate activators, which induce the side reactions because of the high‐energy and high‐frequency stimuli. Here, we proposed a facile approach for tribochemically controlled ATRP (tribo‐ATRP), relying on contact‐electro‐catalysis between titanium oxide (TiO2) particles and CuBr2/tris(2‐pyridylmethylamine (TPMA), without any high‐energy input. Under the friction induced by stirring, the titanium oxide particles were electrified, continuously reducing CuBr2/TPMA into CuBr/TPMA, thereby conversing alkyl halides into active radicals to start ATRP. In addition, the effect of friction on the reaction was elucidated by the theoretical simulation.

view more