Laura Chomiuk

Astronomer Michigan State University

  • East Lansing MI

Laura Chomiuk is an expert of novae and gamma rays.

Contact

Michigan State University

View more experts managed by Michigan State University

Media

Biography

Laura Chomiuk observes supernovae and novae at all wavelengths, from radio to gamma rays. Her team combines observations and models to understand the violent shocks taking place in these explosions. She is particularly interested in how relatively low-energy, garden-variety nova explosions can produce the highest energy photons---gamma-rays.

Laura Chomiuk is also the director of the MSU Campus Observatory, and is invested in bringing authentic research experiences to MSU undergraduates and astronomy experiences to the broader Lansing community.

Industry Expertise

Writing and Editing
Education/Learning
Research

Areas of Expertise

Astronomy
Supernovae
Novae
Gamma Rays

Education

University of Wisconsin-Madison

Ph.D.

Astronomy

2010

University of Wisconsin-Madison

M.S.

Atmospheric & Oceanic Sciences

2006

Wesleyan University

B.A.

Astronomy and Physics

2003

News

Shockwaves Light up Stellar Explosions

Sky & Telescope  online

2017-09-14

“These superluminous supernovae are very far away, and difficult to observe and understand in detail,” says coauthor Laura Chomiuk (Michigan State University). “On the other hand, novae explode 50 times a year in our galactic backyard.”

View More

‘Impossible’ star explosions made by gas and solar wind pile-up

New Scientist  online

2017-09-04

The shocks themselves were already known about, says Laura Chomiuk, who took part in the study, but “nobody thought they were very important”.

The team now wants to observe more novae to see if the hypothesis holds up, says Chomiuk. This will take some time because stellar explosions don’t happen on a regular schedule. Novae, she says, are still poorly understood. “We’re still trying to understand why some of our novae are so luminous and some not,” she says.

View More

ZEROING IN ON A SOURCE OF GAMMA RAYS

MSU Today  online

2014-10-08

But now a team of researchers, led by Michigan State University astronomer Laura Chomiuk, has made a discovery that may shed some light on the subject.

View More

Journal Articles

The Black Hole in the Most Massive Ultracompact Dwarf Galaxy M59-UCD3

The Astrophysical Journal

2018-05-11

We examine the internal properties of the most massive ultracompact dwarf galaxy (UCD), M59-UCD3, by combining adaptive-optics-assisted near-IR integral field spectroscopy from Gemini/NIFS and Hubble Space Telescope (HST) imaging. We use the multiband HST imaging to create a mass model that suggests and accounts for the presence of multiple stellar populations and structural components. We combine these mass models with kinematics measurements from Gemini/NIFS to find a best-fit stellar mass-to-light ratio (M/L) and black hole (BH) mass using Jeans anisotropic models (JAMs), axisymmetric Schwarzschild models, and triaxial Schwarzschild models. The best-fit parameters in the JAM and axisymmetric Schwarzschild models have BHs between 2.5 and 5.9 million solar masses. The triaxial Schwarzschild models point toward a similar BH mass but show a minimum χ 2 at a BH mass of ~0. Models with a BH in all three techniques provide better fits to the central V rms profiles, and thus we estimate the BH mass to be ${4.2}_{-1.7}^{+2.1}\times {10}^{6}$ M ⊙ (estimated 1σ uncertainties). We also present deep radio imaging of M59-UCD3 and two other UCDs in Virgo with dynamical BH mass measurements, and we compare these to X-ray measurements to check for consistency with the fundamental plane of BH accretion. We detect faint radio emission in M59cO but find only upper limits for M60-UCD1 and M59-UCD3 despite X-ray detections in both these sources. The BH mass and nuclear light profile of M59-UCD3 suggest that it is the tidally stripped remnant of a ~109–1010 M ⊙ galaxy.

View more

A DEEP SEARCH FOR PROMPT RADIO EMISSION FROM THERMONUCLEAR SUPERNOVAE WITH THE VERY LARGE ARRAY

The Astrophysical Journal

2016-04-20

Searches for circumstellar material around Type Ia supernovae (SNe Ia) are some of the most powerful tests of the nature of SN Ia progenitors, and radio observations provide a particularly sensitive probe of this material. Here, we report radio observations for SNe Ia and their lower-luminosity thermonuclear cousins. All observations yield non-detections, placing strong constraints on the presence of circumstellar material. We present analytical models for the temporal and spectral evolution of prompt radio emission from thermonuclear SNe as expected from interaction with either wind-stratified or uniform density media. We compare our radio constraints with measurements of Galactic symbiotic binaries to conclude that lesssim10% of thermonuclear SNe have red giant companions.

View more

Gamma-ray novae as probes of relativistic particle acceleration at non-relativistic shocks

Monthly Notices of the Royal Astronomical Society

2015-05-08

The Fermi Large Area Telescope (LAT) discovery that classical novae produce ≳100 MeV gamma-rays establishes that shocks and relativistic particle acceleration are key features of these events. These shocks are likely to be radiative due to the high densities of the nova ejecta at early times coincident with the gamma-ray emission. Thermal X-rays radiated behind the shock are absorbed by neutral gas and reprocessed into optical emission, similar to Type IIn (interacting) supernovae. Gamma-rays are produced by collisions between relativistic protons with the nova ejecta (hadronic scenario) or inverse Compton/bremsstrahlung emission from relativistic electrons (leptonic scenario), where in both scenarios the efficiency for converting relativistic particle energy into LAT gamma-rays is at most a few tens of per cent. The measured ratio of gamma-ray and optical luminosities, Lγ/Lopt, thus sets a lower limit on the fraction of the shock power used to accelerate relativistic particles, ϵnth. The measured value of Lγ/Lopt for two classical novae, V1324 Sco and V339 Del, constrains ϵnth ≳ 10−2 and ≳10−3, respectively. Leptonic models for the gamma-ray emission are disfavoured given the low electron acceleration efficiency, ϵnth ∼ 10−4–10−3, inferred from observations of Galactic cosmic rays and particle-in-cell numerical simulations. A fraction fsh ≳ 100(ϵnth/0.01)−1 and ≳10(ϵnth/0.01)−1 per cent of the optical luminosity is powered by shocks in V1324 Sco and V339 Del, respectively. Such high fractions challenge standard models that instead attribute all nova optical emission to the direct outwards transport of thermal energy released near the white dwarf surface. We predict hard ∼10–100 keV X-ray emission coincident with the LAT emission, which should be detectable by NuSTAR or ASTRO-H, even at times when softer ≲10 keV emission is absorbed by neutral gas ahead of the shocks.

View more

Show All +