hero image
Matey Kaltchev, Ph.D. - Milwaukee School of Engineering. Milwaukee, WI, US

Matey Kaltchev, Ph.D.

Professor, Department Chair | Milwaukee School of Engineering

Milwaukee, WI, UNITED STATES

Dr. Matey Kaltchev's areas of expertise include Physical Chemistry, Surface Science, Nanoengineering

Education, Licensure and Certification (2)

Ph.D.: Physical Chemistry, University of Wisconsin-Milwaukee 1999

M.S.: Engineering Physics, Sofia University 1983

Biography

Dr. Matey Kaltchev is a professor and chair of the Physics & Chemistry and Mathematics Departments at Milwaukee School of Engineering.

Areas of Expertise (7)

Catalysis

Nanoengineering and Nanomaterials

FTIR Spectroscopy

Physical Chemistry

Surface Science

Atomic Force Microscopy

Engineering Physics

Accomplishments (2)

Department of Chemistry Annual Peer Award

University of Wisconsin - Milwaukee

Invited as a Reviewer of Papers Submitted to the 2004 Hawaii International Conference on Science

Renaissance Ilikai Waikiki Hotel, Honolulu, Hawaii

Affiliations (4)

  • American Chemical Society (ACS)
  • American Society of Chemical Engineers (AIChE)
  • Society for Biological Engineering (SBE)
  • American Society of Engineering Education (ASEE)

Social

Research Grants (4)

Bradley Foundation Grant

MSOE Development Office $300,000

Grant for remodeling the general chemistry laboratory classrooms.

Birnschein Foundation Grant

MSOE Development Office $50,000

Grant for the acquisition of instrumentation to be used in the chemistry laboratory.

National Science Foundation Grant 0521612

Major Research Instrumentation $160,000

Acquisition of a Scanning Probe Microscope for research in wear and failure analysis of metal composites.

National Science Foundation Grant

Engineering Research center for Compact and Efficient Fluid Power 

Lead Investigator in Thrust 1.

Selected Publications (5)

Stability improvement and characterization of bioprinted pectin-based scaffold

Journal of Applied Biomaterials & Functional Materials

Stealey, S., Guo, X., Ren, L., Bryant, E., Kaltchev, M., Chen, J., Kumpaty, S., Hua, X., Zhang, W.

2019 Bioprinting is an alternative method for constructing tissues/organs for transplantation. This study investigated the cross-linker influence and post-printing modification using oligochitosan and chitosan for stability improvement.

view more

Electrospinning pectin-based nanofibers: a parametric and cross-linker study

Applied Nanoscience

McCune, D., Guo, X., Shi, T., Stealey, S., Antrobus, R., Kaltchev, M., Chen, J., Kumpaty, S., Hua, X., Ren, W., Zhang, W.

2018 Pectin, a natural biopolymer mainly derived from citrus fruits and apple peels, shows excellent biodegradable and biocompatible properties. This study investigated the electrospinning of pectin-based nanofibers. The parameters, pectin:PEO (polyethylene oxide) ratio, surfactant concentration, voltage, and flow rate, were studied to optimize the electrospinning process for generating the pectin-based nanofibers. Oligochitosan, as a novel and nonionic cross-liker of pectin, was also researched. Nanofibers were characterized by using AFM, SEM, and FTIR spectroscopy. The results showed that oligochitosan was preferred over Ca2+ because it cross-linked pectin molecules without negatively affecting the nanofiber morphology. Moreover, oligochitosan treatment produced a positive surface charge of nanofibers, determined by zeta potential measurement, which is desired for tissue engineering applications.

view more

Design of artificial red blood cells using polymeric hydrogel microcapsules: hydrogel stability improvement and polymer selection

The International Journal of Artificial Organs

Zhang, W., Bissen, M.J., Savela, E.S., Clausen, J.N., Fredricks, S.J., Guo, X., Paquin, Z.R., Dohn, R.P., Pavelich, I.J., Polovchak, A.L., Wedemeyer, M.J.

2016 To improve the stability of pectin-oligochitosan hydrogel microcapsules under physiological conditions.

view more

Novel pectin-based carriers for colonic drug delivery

Pharmaceutical Development and Technology

Zhang, W., Mahuta, K.M., Mikulski, B.A., Harvestine, J.N., Crouse, J.Z., Lee, J.C., Kaltchev, M.G., Tritt, C.S.

2016 Pectin-based hydrogel carriers have been studied and shown to have promising applications for drug delivery to the lower GI tract, especially to the colonic region. However, making sure these hydrogel carriers can pass through the upper GI tract and reach the targeted regions, after oral administration, still remains a challenge to overcome. A solution to this problem is to promote stronger cross-linking interactions within the pectin-based hydrogel network. The combined usage of a divalent cation (Ca2+) and the cationic biopolymer oligochitosan has shown to improve the stability of pectin-based hydrogel systems – suggesting that these two cross-linkers may be used to eventually help improve pectin-based hydrogel systems for colonic drug delivery methods.

view more

Development of a microscale red blood cell-shaped pectin-oligochitosan hydrogel system using an electrospray-vibration method: preparation and characterization

Journal of Applied Biomaterials & Functional Materials

Crouse, J.Z., Mahuta, K.M., Mikulski, B.A., Harvestine, J.N., Guo, X., Lee, J.C., Kaltchev, M.G., Midelfort, K.S., Tritt, C.S., Chen, J., Zhang, W.

2015 To develop and characterize a microscale pectin-oligochitosan hydrogel microcapsule system that could be applied in such biological fields as drug delivery, cell immobilization/encapsulation, and tissue engineering.

view more