Megan Donahue

Professor of Astronomy Michigan State University

  • East Lansing MI

Megan Donahue is an expert on AGN feedback in clusters and circumgalactic gas and is now president of the American Astronomical Society.

Contact

Michigan State University

View more experts managed by Michigan State University

Biography

Donahue grew up on a farm near Inland, Nebraska, a town of about 60 people. She attended St Cecilia's, a small Catholic school in Hasting, Nebraska. Her undergraduate physics S.B. degree is from MIT (1985) and her astrophysics Ph.D. is from the University of Colorado, Boulder (1990). She met her husband Mark Voit, who is also an astronomer, in graduate school. Her post-doctoral research in observational astronomy was completed at the Observatories of the Carnegie Institution of Washington, in Pasadena, California and at the Space Telescope Science Institute (STScI) in Baltimore, Maryland. STScI later hired her as a staff astronomer to do research, work with the data archive team, and write science cases for the James Webb Space Telescope. In 2003, she moved to Michigan State University and re-entered academic life as a professor in the MSU Physics and Astronomy Department, in East Lansing, Michigan. She has three children, Michaela, Sebastian, and Angela.

Industry Expertise

Writing and Editing
Research
Education/Learning

Areas of Expertise

Galaxy Formation
Galaxies
Stars

Education

University of Colorado

Ph.D.

Astrophysics

1990

Massachusetts Institute of Technology

B.S.

Physics

1985

Affiliations

  • American Physics Society : Fellow

News

Skygazer alert: It's super, blue and blood-colored, all at the same time

Lansing State Journal  online

2018-01-30

"A lot of people on the West Coast will be able to see the full lunar eclipse," said Megan Donahue, a professor in Michigan State University's Department of Physics and Astronomy. "(Here), it will turn into a total lunar eclipse, but we'll only be able to see the very beginning of that phase, just before moonset."

View More

Journal Articles

Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report

Instrumentation and Methods for Astrophysics

2015
This report describes the 2014 study by the Science Definition Team (SDT) of the Wide-Field Infrared Survey Telescope (WFIRST) mission. It is a space observatory that will address the most compelling scientific problems in dark energy, exoplanets and general astrophysics using a 2.4-m telescope with a wide-field infrared instrument and an optical coronagraph. The Astro2010 Decadal Survey recommended a Wide Field Infrared Survey Telescope as its top priority for a new large space mission. As conceived by the decadal survey, WFIRST would carry out a dark energy science program, a microlensing program to determine the demographics of exoplanets, and a general observing program utilizing its ultra wide field. In October 2012, NASA chartered a Science Definition Team (SDT) to produce, in collaboration with the WFIRST Study Office at GSFC and the Program Office at JPL, a Design Reference Mission (DRM) for an implementation of WFIRST using one of the 2.4-m, Hubble-quality telescope assemblies recently made available to NASA. This DRM builds on the work of the earlier WFIRST SDT, reported by Green et al. (2012) and the previous WFIRST-2.4 DRM, reported by Spergel et. (2013). The 2.4-m primary mirror enables a mission with greater sensitivity and higher angular resolution than the 1.3-m and 1.1-m designs considered previously, increasing both the science return of the primary surveys and the capabilities of WFIRST as a Guest Observer facility. The addition of an on-axis coronagraphic instrument to the baseline design enables imaging and spectroscopic studies of planets around nearby stars.

View more

A magnified young galaxy from about 500 million years after the Big Bang

Nature - International Journal of Science

2012
Re-ionization of the intergalactic medium occurred in the early Universe at redshift z ≈ 6–11, following the formation of the first generation of stars1. Those young galaxies (where the bulk of stars formed) at a cosmic age of less than about 500 million years (z ≲ 10) remain largely unexplored because they are at or beyond the sensitivity limits of existing large telescopes. Understanding the properties of these galaxies is critical to identifying the source of the radiation that re-ionized the intergalactic medium. Gravitational lensing by galaxy clusters allows the detection of high-redshift galaxies fainter than what otherwise could be found in the deepest images of the sky2. Here we report multiband observations of the cluster MACS J1149+2223 that have revealed (with high probability) a gravitationally magnified galaxy from the early Universe, at a redshift of z = 9.6 ± 0.2 (that is, a cosmic age of 490 ± 15 million years, or 3.6 per cent of the age of the Universe). We estimate that it formed less than 200 million years after the Big Bang (at the 95 per cent confidence level), implying a formation redshift of ≲14. Given the small sky area that our observations cover, faint galaxies seem to be abundant at such a young cosmic age, suggesting that they may be the dominant source for the early re-ionization of the intergalactic medium.

View more

THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW

The Astrophysical Journal

2012
The Cluster Lensing And Supernova survey with Hubble (CLASH) is a 524-orbit Multi-Cycle Treasury Program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions. The survey, described in detail in this paper, will definitively establish the degree of concentration of dark matter in the cluster cores, a key prediction of structure formation models. The CLASH cluster sample is larger and less biased than current samples of space-based imaging studies of clusters to similar depth, as we have minimized lensing-based selection that favors systems with overly dense cores. Specifically, 20 CLASH clusters are solely X-ray selected. The X-ray-selected clusters are massive (kT > 5 keV) and, in most cases, dynamically relaxed. Five additional clusters are included for their lensing strength (θEin > 35'' at zs = 2) to optimize the likelihood of finding highly magnified high-z (z > 7) galaxies. A total of 16 broadband filters, spanning the near-UV to near-IR, are employed for each 20-orbit campaign on each cluster. These data are used to measure precise (σ z ~ 0.02(1 + z)) photometric redshifts for newly discovered arcs. Observations of each cluster are spread over eight epochs to enable a search for Type Ia supernovae at z > 1 to improve constraints on the time dependence of the dark energy equation of state and the evolution of supernovae. We present newly re-derived X-ray luminosities, temperatures, and Fe abundances for the CLASH clusters as well as a representative source list for MACS1149.6+2223 (z = 0.544).

View more

Show All +