hero image
Pamela Grothe - University of Mary Washington. Fredericksburg, VA, US

Pamela Grothe Pamela Grothe

Assistant Professor | University of Mary Washington

Fredericksburg, VA, UNITED STATES

Dr. Grothe's research focuses on climate change.







Pamela Grothe - Tsunami Digital Elevation Modeling Dr. Pamela Grothe on Climate Change during the Pandemic




Dr. Pamela Grothe (Medley) is an Assistant Professor in the Department of Earth and Environmental Sciences as the University of Mary Washington. She recently completed a Ph.D. in the Paleoclimatology Lab at the Earth and Atmospheric Sciences department at Georgia Institute of Technology. Her current research involves a study of the central Pacific climate and El Niño Southern Oscillation (ENSO) variability over the past 6000 years through the analysis of coral fossil records.

Areas of Expertise (8)


Global Warming

Climate Change Science

Atmospheric Science


Student-centred learning

Earth and Atmospheric Science


Accomplishments (6)

Hartley Corporation Fellowship (professional)

Awarded by Sigma Delta Epsilon/Graduate Women in Science, 2014.

National Science Foundation Scholarship (professional)

Awarded to facilitate attendance at the Urbino Summer School in Paleoclimatology, 2014.

Presidential Fellowship (professional)

Awarded by Georgia Institute of Technology, 2012.

Silver Medal Award (professional)

Awarded by the Cooperative Institute for Research in Environmental Sciences (CIRES) for scientific or engineering achievement, 2009.

Victor Zullo Memoria Research Award (professional)

Awarded by the University of North Carolina Wilmington to support a student in the Department of Geology, 2007.

Sylvia and B.D. Schwartz Graduate Fellowship Award (professional)

Awarded by the University of North Carolina Wilmington, 2007.

Education (3)

Georgia Institute of Technology: Ph.D., Earth and Atmospheric Science 2017

University of Colorado at Boulder: M.S., Geological Sciences 2012

University of Mary Washington: B.S., Geology 2006

Graduated with Honors.

Affiliations (3)

  • American Geophysical Union: Member
  • The Geological Society of America: Member
  • Graduate Women in Science: Member

Media Appearances (6)

Planned Destruction

WHRV 89.5, WAMU-FM  tv


It's a health issue as well and it's all correlated because part of the reason that there are more underlying health conditions in these more marginalized communities is a good bit due to the air pollution from the highway traffic that's going through those neighborhoods that increases the rates of asthma, which makes dealing with extreme heat much harder. Pamela Grothe is a professor of environmental science at the University of Mary Washington.

view more

'24 Hours of Reality' digital conversation discusses COVID-19, climate change and voting

The Free Lance-Star  print


'24 Hours of Reality' digital conversation discusses COVID-19, climate change and voting

view more

Dr. Pamela Grothe on Climate Change During the Pandemic

NewsPoint360  online


Dr. Pamela Grothe on Climate Change During the Pandemic

view more

LETTER: Smarter choices will lead to net-zero emissions

The Free Lance-Star  online


As a professor for UMW’s COVID-19 in Context course, I spoke to students and community members on how the worldwide shutdown of economies has affected climate change.

view more

Cost of Clean Energy Act overblown

The Free Lance-Star  print


The Free Lance–Star’s recent editorial, [“Bad time for $50/month energy tax,” May 14] was just this paper’s latest in a series of shortsighted tirades against clean energy and efforts to address the climate crisis.

view more

VA Scientist Finds Another Reason for Extreme Weather

WVTF Radio IQ  online


By studying fossilized coral, Grothe determined that extreme El Ninos correspond closely with the time when people began burning coal and oil. “The industrial record really sticks out like a sore thumb," she says. "If you look at the last twenty years – at the intensity of these swings – they are stronger than any 20-year period from the pre-industrial record.”

view more

Articles (6)

A comparison of U/Th and rapid‐screen 14C dates from Line Island fossil corals

Geochemistry, Geophysics, Geosystems

Pamela R. Grothe, Kim M. Cobb. Shari L. Bush, Hai Cheng, Guaciara M. Santos, John R. Southon, R. Lawrence Edwards, Daniel M. Deocampo, Hussein R. Sayani

2016 Time‐consuming and expensive radiometric dating techniques limit the number of dates available to construct absolute chronologies for high‐resolution paleoclimate reconstructions. A recently developed rapid‐screen 14C dating technique reduces sample preparation time and per sample costs by 90%, but its accuracy has not yet been tested on shallow‐water corals. In this study, we test the rapid‐screen 14C dating technique on shallow‐water corals by comparing 44 rapid‐screen 14C dates to both high‐precision 14C dates and U/Th dates from mid‐ to late‐Holocene fossil corals collected from the central tropical Pacific (2–4°N, 157–160°W). Our results show that 42 rapid‐screen 14C and U/Th dates agree within uncertainties, confirming closed‐system behavior and ensuring chronological accuracy. However, two samples that grew ∼6500 years ago have calibrated 14C ages ∼1000 years younger than the corresponding U/Th ages, consistent with diagenetic alteration as indicated by the presence of 15–23% calcite. Mass balance calculations confirm that the observed dating discrepancies are consistent with 14C addition and U removal, both of which occur during diagenetic calcite recrystallization. Under the assumption that aragonite‐to‐calcite replacement is linear through time, we estimate the samples' true ages using the measured 14C and U/Th dates and percent calcite values. Results illustrate that the rapid‐screen 14C dates of Holocene‐aged fossil corals are accurate for samples with less than 2% calcite. Application of this rapid‐screen 14C method to the fossil coral rubble fields from Kiritimati Island reveal significant chronological clustering of fossil coral across the landscape, with older ages farther from the water's edge.

view more

Climatic and biotic thresholds of coral-reef shutdown

Nature Climate Change

Lauren T. Toth, Richard B. Aronson, Kim M. Cobb, Hai Cheng, R. Lawrence Edwards, Pamela R. Grothe and Hussein R. Sayani

2015 Climate change is now the leading cause of coral-reef degradation and is altering the adaptive landscape of coral populations. Increasing sea temperatures and declining carbonate saturation states are inhibiting short-term rates of coral calcification, carbonate precipitation and submarine cementation. A critical challenge to coral-reef conservation is understanding the mechanisms by which environmental perturbations scale up to influence long-term rates of reef-framework construction and ecosystem function. Here we reconstruct climatic and oceanographic variability using corals sampled from a 6,750-year core from Pacific Panamá. Simultaneous reconstructions of coral palaeophysiology and reef accretion allowed us to identify the climatic and biotic thresholds associated with a 2,500-year hiatus in vertical accretion beginning ∼4,100 years ago. Stronger upwelling, cooler sea temperatures and greater precipitation—indicators of La Niña-like conditions—were closely associated with abrupt reef shutdown. The physiological condition of the corals deteriorated at the onset of the hiatus, corroborating theoretical predictions that the tipping points of radical ecosystem transitions should be manifested sublethally in the biotic constituents. Future climate change could cause similar threshold behaviours, leading to another shutdown in reef development in the tropical eastern Pacific.

view more

Challenges in Building Coastal Digital Elevation Models

Journal of Coastal Research

Barry W. Eakins and Pamela R. Grothe

2014 Digital elevation models (DEMs) support a wide variety of uses, including modeling of surface processes, habitat mapping and conservation planning, coastal change and terrain analysis, and Earth visualization and exploration. These models may, however, contain significant deviations from the surface they are intended to represent, which could reduce their usefulness. Additional complexities arise when integrating bathymetric and topographic data to create coastal DEMs. We identify common challenges in building square-cell, coastal DEMs and present some solutions. These challenges are grouped into six general categories: (1) source data, (2) data processing, (3) model development, (4) model assessment, (5) morphologic change, and (6) model uncertainty. Some DEM best practices to help improve DEM accuracy and utility include: visual inspection of source data in a geographic information system (GIS) environment; establishing common horizontal and vertical datums; using data buffers and bathymetric presurfaces; assessing DEM accuracy; accounting for morphologic change; and quantifying DEM uncertainty at the cell level.

view more

Propagation history of the Osaka-wan blind thrust, Japan, from trishear modeling

Journal of Structural Geology

Pamela R.Grothe, Nestor Cardozo, Karl Mueller, Tatsuya Ishiyama

2013 Mapping the nucleation and 3D fault tip growth of the active Osaka-wan blind thrust provides an opportunity to asses how reactivated thrusts build slip from preexisting faults and the threat they pose as sources of large earthquakes. Analysis of folded growth strata, based on 2D trishear inverse modeling allows a range of best-fit models of the evolution of slip and propagation of the fault to be defined. The depth of the fault tip at 1200 ka varies between ∼1.5–4.5 km, suggesting the fault grew upward from high in the crust, and that it is reactivated. From its onset at ∼1500 ka, the fault grew rapidly along strike in ∼300 ky, and upwards with a P/S ratio of 2.5–3.0, but variable fault slip in space and time. Shallower depths of the fault tip at initiation and thinner basin fill correlates with slower propagation with time, contradicting models that argue for sediments as inhibitors of fault growth. Results also suggest the displacement profile of the currently active thrust is offset from its predecessor, assuming shallower depths to the original fault correlate with greater displacement in its prior history. These results suggest reactivated faults may accrue slip differently than newly developed ones, based on the history of upward fault propagation.

view more

Glacial‐interglacial size variability in the diatom Fragilariopsis kerguelensis: Possible iron/dust controls?

Paleoceanography and Paleoclimatology

G. Cortese, R. Gersonde, K. Maschner, P. Medley

2012 The valve area of Fragilariopsis kerguelensis, the most abundant diatom species in the Southern Ocean, strongly changes in size in response to varying conditions in the surface ocean. We examined the link, both in two iron fertilization experiments and in sediment samples covering several glacial Terminations, between size variability in this species and environmental conditions across the Antarctic Polar Front, including sea ice extent, sea surface temperature, and the input of eolian dust. The iron fertilization experiments show valve area to be positively correlated with iron concentrations in ambient waters, which suggests the possibility of a causal relation between valve size of Fragilariopsis kerguelensis and ambient surface water iron concentration. Larger valves are usually found during glacial times and thus seem to be related to lower sea surface temperature and wider sea ice coverage. Moreover, our results indicate that there usually is a strong correlation between larger valve size and increased input of eolian dust to the Southern Ocean. However, this correlation, obvious for the fertilization experiments and for glacial Terminations I, II, III, and V, does not seem to be valid for Termination VI, where size appears to be inversely correlated to dust input.

view more

Paleosalinity history of middle Holocene lagoonal and lacustrine deposits in the Enriquillo Valley, Dominican Republic based on pore morphometrics and isotope geochemistry of ostracoda


Pamela Medley, Neil E. Tibert, William P. Patterson, H. Allen Curran, Lisa Greer, Jean-Paul Colin

2007 The southwestern region of the Dominican Republic (Enriquillo Valley) contains exceptionally well-preserved, relict marine and saline lake deposits of mid-Holocne age. Abundant euryhaline ostracodes found in this deposit include Cyprideis salebrosa, C. mexicana, C. similis, and C. edentata. Morphometric and geochemical analyses performed on Cyprideis spp. provide high δ18O and δ13C values that are coincident with relative abundances of irregularly shaped pores that permeate the ostracode carapace. We recognize three stratigraphic intervals with distinct ostracode pore shape and stable isotope trends: (I) a 4.5–5.0m interval that contains ostracodes with highly irregular shaped pores (multiradiate) and high amplitude variability in δ18O and δ13C values; (II) a 5.0–5.6m interval comprised of ostracodes with circular pores and an overall trend towards low δ18O and δ13C values; and (III) a 5.6–6.5m interval containing ostracodes with an upward increasing abundance of circular pore shapes coincident with decreasing δ18O and δ13C values. When the Enriquillo lagoon was first separated from the Caribbean Sea approximately 4.3 ka, an arid and evaporative climate led to hypersaline water in a restricted lagoon environment. By the middle to late-Holocene, increased precipitation in the valley resulted in a coastal lake system that became progressively oligohaline. Moderate to small amplitude variability in the salinity proxy data (δ18O) suggest short-term oscillations in the precipitation-evaporation budgets at that time. At least two marine incursions likely contributed to the observed variability in ostracode δ18O and δ13C values. Evidence for abrupt changes in base level indicate that climatic factors or also tectonic activity may have contributed to the observed paleoenvironmental trends recorded in these deposits.

view more