Philip Santangelo

Professor, Biomedical Engineering Georgia Tech College of Engineering

  • Atlanta GA

Philip J. Santangelo researches optical microscopy and in vivo imaging, RNA virus pathogenesis, HIV/SIV.

Contact

Georgia Tech College of Engineering

View more experts managed by Georgia Tech College of Engineering

Spotlight

2 min

A new HIV treatment aimed at women could be on the horizon – let our experts explain for your stories.

Did you know? 18.8 million women and girls are living with HIV AIDS-related illnesses are the leading cause of death among females between the age of 15 and 49 1.8 million children are born with HIV, contracted from their mothers In sub-Saharan Africa, 3 in 4 new HIV infections in teenagers are among girls There are 5,000 new HIV infections per day Women continue to be disproportionally affected by HIV around the world, but particularly in sub-Saharan Africa, where three in four new HIV infections are among young girls. For women seeking care in developing countries, preventing and managing HIV is an expensive proposition. Truvada, the pre-exposure HIV treatment drug commonly known as PrEP, costs about $1,500 a month and must be taken daily for continual HIV protection. Likewise, the antiretroviral therapies that attempt to control HIV infection are costly at nearly $20,000 a year. These oral medications as therapy are a non-starter in developing nations like Africa, where nearly 30 million people are infected with HIV. But Phil Santangelo, biomedical engineering professor at Georgia Tech, has another approach in mind. He’s working on an aerosolized RNA-based HIV preventative that eventually could protect women against the disease. It’s applied vaginally and, currently, the aerosol has been tested in pre-clinical trials. The early results are promising; it’s been shown to create HIV antibodies that ward off the infection. It also has the potential to protect against genital herpes and other pathogens, depending on what protein the RNA encodes for. “A single administration of this aerosol is showing expression of antibodies against HIV for up to three months in pre-clinical trials,” said Santangelo. “Our hope is that this will be more affordable, granting easier access to women in developing countries, especially. With women’s health at the forefront of many conversations today, this has the potential to revolutionize disease prevention.” Eventually, Santangelo says RNA could be used for contraception as well – the RNA would express antibodies that inhibit sperm. Again, if birth control can’t be accessed in developing countries, a self-administered, inexpensive aerosol could change the lives of many women. Are you a journalist covering this very important topic? If you have questions or would like to know more about the research being conducted at the Georgia Tech College of Engineering – then let our experts help. Dr. Philip J. Santangelo is an Assistant Professor in the Wallace H. Coulter Department of Biomedical Engineering. Dr. Santangelo is an expert in the areas of therapeutics and vaccines and HIV/SIV and hRSV. He is available to speak with media regarding this emerging discovery simply click on his icon to arrange an interview.

Philip Santangelo

Media

Social

Biography

Dr. Philip J. Santangelo is an Assistant Professor in the Wallace H. Coulter Department of Biomedical Engineering. He graduated from Polytechnic University in 1991 with a B.S. in Aerospace Engineering. In 1998, he obtained his Ph.D. in Engineering from the University of California at Davis under Dr. Ian Kennedy, on the development of laser-based diagnostics for multiphase reacting jets and droplet streams. Dr. Santangelo followed his Ph.D. with a postdoctoral fellowship at Sandia National Laboratories in Livermore, California under Christopher Shaddix, and a position in industry, at Micron Optics, Inc., in Atlanta, Georgia. Next, Dr. Santangelo returned to academia as a postdoctoral fellow and then as a research faculty member at Georgia Tech under Dr. Gang Bao until his current appointment at Georgia Tech.

Areas of Expertise

Therapeutics and Vaccines
RNA Regulation
RNA Virus Pathogenesis
Optical Microscopy and In Vivo Imaging
HIV/SIV and hRSV

Education

University of California, Davis

Ph.D.

Engineering

1998

Purdue University

M.S.

Engineering

1994

New York University - Polytechnic School of Engineering

B.S.

Aerospace Engineering

1991

Affiliations

  • Center for Childhood Infections and Vaccines (CCIV)
  • Center for Cystic Fibrosis and Airways Disease Research (CF-AIR)

Selected Media Appearances

Think Small

Research Horizons  online

2019-07-08

A tiny 3D-printed tracheal splint that makes it possible for babies to breathe. An experimental method of drug delivery that could protect kids from a nasty respiratory virus. An app that screens kids (and adults) for anemia, no blood draws needed.

View More

$21.9 Million Gene Modulation Research Effort Targets Influenza Pandemics

Georgia Tech News Center  online

2019-06-28

A multifaceted research effort aimed at temporarily modulating gene expression using RNA-based techniques could help protect against pandemic flu by boosting lung resistance to infection, attacking the influenza virus directly, enhancing immune system response and improving the effects of existing vaccines.

View More

mRNA antibody delivery could prevent RSV infection

Futurity  online

2018-11-28

RSV sends some 57,000 US children younger than 5 to the hospital each year. There’s no vaccine for the virus, which usually only causes cold-like symptoms. Medications doctors sometimes use to prevent it in high-risk children aren’t always effective.

View More

Show All +

Selected Articles

Targeting α4β7 integrin reduces mucosal transmission of simian immunodeficiency virus and protects gut-associated lymphoid tissue from infection

Nature Medicine

Siddappa N Byrareddy, Brianne Kallam, James Arthos, Claudia Cicala, Fatima Nawaz, Joseph Hiatt, Ellen N Kersh, Janet M McNicholl, Debra Hanson, Keith A Reimann, Markus Brameier, Lutz Walter, Kenneth Rogers, Ann E Mayne, Paul Dunbar, Tara Villinger, Dawn Little, Tristram G Parslow, Philip J Santangelo, Francois Villinger, Anthony S Fauci, Aftab A Ansari

2014

α 4 β 7 integrin–expressing CD4+ T cells preferentially traffic to gut-associated lymphoid tissue (GALT) and have a key role in HIV and simian immunodeficiency virus (SIV) pathogenesis. We show here that the administration of an anti-α 4 β 7 monoclonal antibody just prior to and during acute infection protects rhesus macaques from transmission following repeated low-dose intravaginal challenges with SIV mac251. In treated animals that became infected, the GALT was significantly protected from infection and CD4+ T cell numbers were maintained in both the blood and the GALT. Thus, targeting α 4 β 7 reduces mucosal transmission of SIV in macaques.

View more

Sustained Virologic Control in Siv+ Macaques After Antiretroviral and α4β7 Antibody Therapy

Science

Siddappa N Byrareddy, James Arthos, Claudia Cicala, Francois Villinger, Kristina T Ortiz, Dawn Little, Neil Sidell, Maureen A Kane, Jianshi Yu, Jace W Jones, Philip J Santangelo, Chiara Zurla, Lyle R McKinnon, Kelly B Arnold, Caroline E Woody, Lutz Walter, Christian Roos, Angela Noll, Donald Van Ryk, Katija Jelicic, Raffaello Cimbro, Sanjeev Gumber, Michelle D Reid, Volkan Adsay, Praveen K Amancha, Ann E Mayne, Tristram G Parslow, Anthony S Fauci, Aftab A Ansari

2016

Antiretroviral drug therapy (ART) effectively suppresses replication of both the immunodeficiency viruses, human (HIV) and simian (SIV); however, virus rebounds soon after ART is withdrawn. SIV-infected monkeys were treated with a 90-day course of ART initiated at 5 weeks post infection followed at 9 weeks post infection by infusions of a primatized monoclonal antibody against the α4β7 integrin administered every 3 weeks until week 32. These animals subsequently maintained low to undetectable viral loads and normal CD4+ T cell counts in plasma and gastrointestinal tissues for more than 9 months, even after all treatment was withdrawn. This combination therapy allows macaques to effectively control viremia and reconstitute their immune systems without a need for further therapy.

View more

Proximity Ligation Assays for In Situ Detection of Innate Immune Activation: Focus on In Vitro-Transcribed mRNA

Molecular Therapy-Nucleic Acids

Emmeline L Blanchard, Kristin H Loomis, Sushma M Bhosle, Daryll Vanover, Patrick Baumhof, Bruno Pitard, Chiara Zurla, Philip J Santangelo

2019

The characterization of innate immune activation is crucial for vaccine and therapeutic development, including RNA-based vaccines, a promising approach. Current measurement methods quantify type I interferon and inflammatory cytokine production, but they do not allow for the isolation of individual pathways, do not provide kinetic activation or spatial information within tissues, and cannot be translated into clinical studies. Here we demonstrated the use of proximity ligation assays (PLAs) to detect pattern recognition receptor (PRR) activation in cells and in tissue samples. First, we validated PLA’s sensitivity and specificity using well-characterized soluble agonists. Next, we characterized PRR activation from in vitro-transcribed (IVT) mRNAs, as well as the effect of sequence and base modifications in vitro. Finally, we established the measurement of PRR activation in tissue sections via PLA upon IVT mRNA intramuscular (i.m.) injection in mice. Overall, our results indicate that PLA is a valuable, versatile, and sensitive tool to monitor PRR activation for vaccine, adjuvant, and therapeutic screening.

View more

Show All +