Robert Quinn

Assistant Professor of Biochemistry Michigan State University

  • East Lansing MI

Robert Quinn's current research is on how the human microbiome is a consortium of microorganisms living on and in our bodies.

Contact

Michigan State University

View more experts managed by Michigan State University

Spotlight

6 min

New study reveals how corals teach their offspring to beat the heat

Why this matters: Warming ocean temperatures are causing a phenomenon called coral bleaching, putting corals at a greater risk of starvation, disease and death. This study shows that rice coral, an important reef-building species, passes on thermal resistance to their offspring and avoids coral bleaching. Understanding this is important to building healthier coral reefs and protecting their future. Coral reefs are habitats for nearly a quarter of all marine life, protect coasts from erosion and support the livelihoods of millions. Protecting coral reefs is crucial to preserving the future of our oceans. Plunge into the shallows off the Florida Keys, Hawaiʻi or the Great Barrier Reef in Australia and you are likely to meet a startling sight. Where there were once acres of dazzling coral — an underwater world of dayglo greens, brassy yellows and midnight blues — is now a ghostly landscape, with many reefs seemingly drained of their pigment. Caused by stressful conditions like warming ocean temperatures, coral bleaching is a leading threat to some of our planet’s most diverse and vital ecosystems. Now, a team of researchers has found that some corals survive warming ocean temperatures by passing heat-resisting abilities on to their offspring. The findings, published in the journal Nature Communications, are the result of a collaboration between Michigan State University, Duke University and the Hawaiʻi Institute of Marine Biology, or HIMB, at the University of Hawaiʻi at Mānoa. This work, funded by the National Science Foundation and a Michigan State University Climate Change Research grant, is crucial in the race to better conserve and restore threatened reefs across the globe. Coral reefs are habitats for nearly a quarter of all marine life, protecting coastlines from storms and erosion and supporting the livelihoods of millions of people around the world. Though still alive, bleached corals are at a much higher risk of disease, starvation and eventual mortality. In their latest study, the team explored how resistance to thermal stress is passed down from parent to offspring in an important reef-building species known as rice coral. These findings are helping researchers breed stronger, heat-tolerant generations to better face environmental stress. “The Coral Resilience Lab in Hawaiʻi has developed amazing methods to breed and rear corals during natural summer spawning,” said Spartan biochemist and study co-author Rob Quinn, whose lab takes samples of these corals and generates massive datasets on their biochemistry with instruments at MSU. “This is a true scientific collaboration that can support coral breeding and reproduction to cultivate more resilient corals for the warming oceans of the future.” A colorful crowd The kaleidoscopic of shades we associate with healthy coral is the product of a bustling exchange of resources between a coral animal and its algae partners. When all is well, you might think of this relationship as that of tenants living in a home and paying a bit of rent. In exchange for cozy, sheltered spaces found within the coral tissue as well as nutrients, algae use photosynthesis to produce sugars. These sugars can provide up to 95% of the energy that coral needs to grow and form the sprawling, breathtaking reefs we know. In tropical waters often lacking nutrients, disruptions in this exchange — like those that occur during bleaching events — can be disastrous. When looking at a specimen of coral that’s suffered bleaching, you’re glimpsing a coral that’s “kicked out” its algae, leaving behind a pale skeleton. “Corals are like the trees in an old growth forest; they build the ecosystems we know as reefs on the energetic foundation between the animal and algae,” explained Crawford Drury, an assistant researcher at the Coral Resilience Lab at HIMB and co-author of the study In the waters of Kāneʻohe Bay, the Coral Resilience Lab is spearheading research to best understand this coral reef ecology and the molecular mechanisms driving thermal stress. The lab is likewise pioneering the breeding of thermally resistant coral for experiments and the restoration of reefs, a highly specialized process few labs in the world can achieve. So, while you’d usually be hard pressed to find fresh coral for study in East Lansing, MSU’s partnership with the Coral Resilience Lab has led to a globe-spanning collaboration that closes the gap between field and laboratory. “HIMB and MSU have developed a really amazing partnership. I’m just happy they’ve let me be a part of it. I can’t wait to see what comes out of it next,” said Ty Roach, a visiting faculty at Duke University and lead author of the new study. Heat-resistant hand-me-downs In the wild, rice coral takes on a dizzying array of shapes, from jutting, spiky protrusions to flat, tiered terraces — all identifiable by the tiny grain-like projections that lend the species its name. When samples arrive at MSU, Quinn applies an analytical approach known as metabolomics to understand the complex biochemistry of the organisms. Like a snapshot of life in motion, metabolomics allows researchers to get an idea of what’s occurring within a cell or tissue sample at a precise moment in time. Leveraging advanced instrumentation found in MSU’s Mass Spectrometry and Metabolomics Core, the team searched for biochemical signatures associated with bleaching resistance in their samples. This included analyzing coral sperm, eggs, embryos and larvae, as well as their algal “collaborators.” Through their analyses, the researchers discovered that both coral and algae pass along the biochemical signature of thermal tolerance, and that this tolerance was successfully maintained from parent coral into the next generation. Given rice coral’s method of reproduction and the numerous stages of the coral life cycle, this was an impressive feat. “Corals usually spawn based on the lunar cycle; for our experiment, this means late nights around the summer new moons and months of work rearing coral larvae and juveniles,” said Drury. This summer, Quinn group graduate student Sarah VanDiepenbos had the chance to join Coral Resilience Lab researchers to witness one such nighttime coral spawning and breeding event. “It was such a serene, beautiful experience. The timing is impeccable, as the process only lasts 20 to 30 minutes total,” VanDiepenbos explained. “The coral bundles slowly float upward, trying to find another gamete to combine with once they get to the surface. This release is gradual, so they can have a maximum chance of finding spawn from a different coral,” she added. Tougher genes for warmer seas While many species of corals uptake symbionts from the surrounding seawater, rice coral provide their eggs with algae, handing this relationship down from parent to child. “To have this algae’s thermal tolerance remain through an entire generation and all the stages of coral development, that’s surprising, and promising for the future of coral reefs,” Quinn said, who’s also an associate professor in MSU’s Department of Biochemistry and Molecular Biology. Especially compelling was the fact that the earliest stages of the coral lifecycle, like embryos and larva, showed chemical signatures linked to whether parent organisms were thermally tolerant or not. This means that not only do offspring receive heat-resistant genes, but also beneficial molecules to give them a head start against heat stress. “Some of the most interesting findings from this work is that coral lipid biochemistry is maintained through all stages of development during reproduction,” Quinn said. “Importantly, these lipids come from both the host coral and its algal symbiont, indicating there is crosstalk between them to prepare the next generation to resist bleaching,” he added. In showing how inherited thermal resistance originates from both coral and algae, this research provides deeper insight into the finely tuned, symbiotic microcosm found in corals across the world’s oceans. Most exciting for the team is how these findings are contributing to the science behind the restoration of reefs and the breeding of stronger, more heat-tolerant coral generations. “Our metabolomics research at MSU could support reef restoration efforts at places like the Kāneʻohe Bay by identifying corals that are resistant to bleaching,” Quinn said. To connect with the researchers, click on the profile icon below.  ​

Robert Quinn

Biography

As an assistant professor at Michigan State University I use multi-omics methods including metagenomics, metabolomics and classic microbiology approaches to understand the causes of dysbiosis in host-associated microbial communities. I have studied the microbiome of everything from salmon, to lobsters, to corals, to lungs to guts, to….whatever is next. I’m a huge sports fan and spend some of my spare time trying figure out how to apply advanced baseball statistics to microbiome research.

I was raised in Bancroft, Ontario, Canada in close proximity to Algonquin Park which sparked my early interest in biology through constant interaction with the outdoors.

I received my undergraduate and Master degrees in microbiology at the University of Guelph in Ontario, Canada. I then completed a PhD with Dr. Andrei Chistoserdov at the University of Louisiana at Lafayette studying the microbiome of Epizootic Shell Disease in the American Lobster. I completed my postdoctoral studies with Dr. Forest Rohwer at San Diego State University and Pieter Dorrestein at UC San Diego studying the cystic fibrosis lung microbiome, coral reefs and other complex microbial systems.

Areas of Expertise

Microbiome
Cystic Fibrosis
Bile Acid
Metabolomics
Microorganisms
Microbiology
Environmental and Evolutionary Biology

Education

University of Louisiana at Lafayette

PhD

Environmental and Evolutionary Biology

2012

University of Guelph

MSc

Microbiology

2008

University of Guelph

BSc

Microbiology

2005

News

Scientists can tell how some corals survive climate-related coral bleaching events

CBC  online

2021-02-12

Increasing ocean temperatures due to climate warming are putting the world's coral reefs at risk of bleaching, a devastating process by which where once vibrant and colorful corals become a ghostly, skeletal white. Now scientists in Hawaii and Michigan think they know why some corals are susceptible to bleaching and others are not. Canadian scientist Robert Quinn, an assistant professor of microbiology at Michigan State University, spoke with Quirks & Quarks host Bob McDonald about what might be driving that crucial difference in how corals respond to the heat. Back in 2015, an extreme heating event that led to the bleaching of corals around the world created an opportunity for Quinn and his colleagues to study why some corals — even of the same species — turn white and others don't.

View More

How well antibiotics work for cystic fibrosis patients may be affected by PH, oxygen

MSU Today  online

2018-10-15

People living with cystic fibrosis spend their lives battling chronic lung infections resistant to antibiotic therapy. A one-size-fits all approach to wiping out the bacterium may not be the best approach for all patients with the disease, according to a new study led by Pieter Dorrestein, a professor at the University of California San Diego, and Robert Quinn, a Michigan State University researcher who conducted the research at UC San Diego.

View More

Journal Articles

Neutrophilic proteolysis in the cystic fibrosis lung correlates with a pathogenic microbiome

Microbiome

Robert A. Quinn, Sandeep Adem, Robert H. Mills, William Comstock, Lindsay DeRight Goldasich, Gregory Humphrey, Alexander A. Aksenov, Alexei V. Melnik, Ricardo da Silva, Gail Ackermann, Nuno Bandeira, David J. Gonzalez, Doug Conrad, Anthony J. O’Donoghue, Rob Knight & Pieter C. Dorrestein

2019

Studies of the cystic fibrosis (CF) lung microbiome have consistently shown that lung function decline is associated with decreased microbial diversity due to the dominance of opportunistic pathogens. However, how this phenomenon is reflected in the metabolites and chemical environment of lung secretions remains poorly understood.

View more

Microbial Transformations of Organically Fermented Foods

Metabolites

Ruma Raghuvanshi, Allyssa G. Grayson, Isabella Schena, Onyebuchi Amanze, Kezia Suwintono and Robert A. Quinn

2019

Fermenting food is an ancient form of preservation ingrained many in human societies around the world. Westernized diets have moved away from such practices, but even in these cultures, fermented foods are seeing a resurgent interested due to their believed health benefits. Here, we analyze the microbiome and metabolome of organically fermented vegetables, using a salt brine, which is a common ‘at-home’ method of food fermentation. We found that the natural microbial fermentation had a strong effect on the food metabolites, where all four foods (beet, carrot, peppers and radishes) changed through time, with a peak in molecular diversity after 2–3 days and a decrease in diversity during the final stages of the 4-day process. The microbiome of all foods showed a stark transition from one that resembled a soil community to one dominated by Enterobacteriaceae, such as Erwinia spp., within a single day of fermentation and increasing amounts of Lactobacillales through the fermentation process. With particular attention to plant natural products, we observed significant transformations of polyphenols, triterpenoids and anthocyanins, but the degree of this metabolism depended on the food type. Beets, radishes and peppers saw an increase in the abundance of these compounds as the fermentation proceeded, but carrots saw a decrease through time. This study showed that organically fermenting vegetables markedly changed their chemistry and microbiology but resulted in high abundance of Enterobacteriaceae which are not normally considered as probiotics. The release of beneficial plant specialized metabolites was observed, but this depended on the fermented vegetable.

View more

Cystic Fibrosis Rapid Response: Translating Multi-omics Data into Clinically Relevant Information

mBio

Ana Georgina Cobián Güemes, Yan Wei Lim, Robert A. Quinn, Douglas J. Conrad, Sean Benler, Heather Maughan, Rob Edwards, Thomas Brettin, Vito Adrian Cantú, Daniel Cuevas, Rohaum Hamidi, Pieter Dorrestein, Forest Rohwer

2019

Pulmonary exacerbations are the leading cause of death in cystic fibrosis (CF) patients. To track microbial dynamics during acute exacerbations, a CF rapid response (CFRR) strategy was developed. The CFRR relies on viromics, metagenomics, metatranscriptomics, and metabolomics data to rapidly monitor active members of the viral and microbial community during acute CF exacerbations. To highlight CFRR, a case study of a CF patient is presented, in which an abrupt decline in lung function characterized a fatal exacerbation. The microbial community in the patient’s lungs was closely monitored through the multi-omics strategy, which led to the identification of pathogenic shigatoxigenic Escherichia coli (STEC) expressing Shiga toxin. This case study illustrates the potential for the CFRR to deconstruct complicated disease dynamics and provide clinicians with alternative treatments to improve the outcomes of pulmonary exacerbations and expand the life spans of individuals with CF.

View more

Show All +