Shaowen Xu

Associate Professor, Department of Mechanical Engineering Georgia Southern University

  • Statesboro GA

Shaowen Xu is an expert in Friction Stir Welding Processing, Advanced Nanomaterials and Nanofracture and Nanofailure.

Contact

Georgia Southern University

View more experts managed by Georgia Southern University

Social

Biography

Dr. Xu has years of experience conducting research in the fields of Solid and Computational Mechanics, Mechanics of Material, Experiment and Numerical Simulation Integrated Method; as well as Material Manufacturing and Processing. His research projects cover a broad spectrum of scientific research and engineering applications, such as, Friction Stir Welding and Processing; Nano-material and bio- hierarchically structured material; transient dynamics; structural response analysis in extreme loading environment; material behavior characterization of advanced engineering material and bio-material; multi-disciplinary/multi-scale modeling and simulations of engineering structures and manufacturing processes.

Areas of Expertise

Stress Analysis
Material Behavior of Advanced Engineering Materials and Bio-materials
Friction Stir Welding Processing
Advanced Nanomaterials, Nanofracture and Nanofailure
Transient Dynamics of Extreme Loads

Education

University of Souther Carolina

Ph.D.

Articles

Multiscale mechanical and structural characterizations of Palmetto wood for bio-inspired hierarchically structured polymer composites

Materials Science and Engineering C

S. Xu et al.

2010

There has been a great deal of effort focused on engineering polymer composites with hierarchical microstructures consisting of one or more ingredients that can be organized differently across multiple length scales. However, there are hierarchical microstructures that have evolved over eons in biological materials. These unique structure–property relationships may serve as templates for engineering hierarchically structured polymer composites with tailored properties. One such biological material is the Palmetto wood of South Carolina, which was successfully used as a protective structure during the Revolutionary and Civil Wars to absorb cannon shot. Through an assembly of microfibers into macrofibers embedded in a cellulose matrix, the Palmetto wood has optimized its ability to resist failure when subjected to extreme dynamic loading events, such as hurricanes. Understanding of the dynamic and static structure–property relationship in Palmetto wood can facilitate the development of new hierarchically structured polymer composites with increased resistance to failure. Therefore, the structure–property relationship in Palmetto wood has been studied using novel multiscale microstructural and mechanical characterization techniques. Models have been developed that indicate that the hierarchical structure of Palmetto wood obeys the linear Rule-of-Mixtures across multiple length scales. This understanding has led to the development of new polymer composite structures that exhibit properties similar to Palmetto wood using conventional laminated carbon fiber–epoxy composites and new polymer nanocomposites consisting of carbon nanofibers. The use of the nanofibers appears to enhance the interaction between the composite components in a manner similar to the interaction between fibers in the Palmetto wood that enables the laminated composite to behave more like the individual layers by resisting the tendency to delaminate and increasing the Weibull statistical parameters closer to those observed in Palmetto wood.

View more

An inverse approach for pressure load identification

International Journal of Impact Engineering

S. Xu et al.

2010

An inverse approach for the identification of pressure loading on a structure has been proposed and developed. In this approach, surface measurements of structural response (e.g. strain, displacement and velocity field measurements, such as can be measured with 3D digital image correlation) are utilized as input data and are combined with numerical simulations to identify the pressure load on a structure. The inverse approach has been verified by numerical benchmarks involving pressure identification under quasi-static as well as dynamic impulse loading conditions, and also been validated by an experiment involving a quasi-static pressure load. The results indicate that the proposed inverse method can identify not only the magnitude of the quasi-static pressure but also the impulsive pressure loading history. The developed inverse approach offers an opportunity to apply inverse analysis techniques to identify interactive pressure loads (such as those resulting from a blast wave) on structures in explosive events.

View more

Evaluation of the Damage Mechanism in CFRP Composite Using Computer Vision

Journal of the Korean Society of Marine Engineering

S. Xu et al.

2010

Continuing progress in high technology has created numerous industrial applications for new advanced composite materials. Among these materials, carbon fiber-reinforced plastic (CFRP) laminate composite is typically used for low-weight carrying structures that require high specific strength. In this study, the damage mechanism of a compact tension (CT) specimen of woven CFRP laminates is described in terms of strain and displacement changes and crack growth behavior. The digital image correlation (DIC) method (which is employed here as a computer vision technique) is analyzed. Acoustic emission (AE) characteristics are also acquired during fracture tests. The results demonstrate the usefulness of these methods in evaluating the damage mechanism for woven CFRP laminate composites. From the results, we show these methods are so useful in order to evaluate the damage mechanism for woven CFRP laminate composites.

View more

Show All +