
Subha Das
Associate Professor Carnegie Mellon University
- Pittsburgh PA
Subha Das has helped developed conditions for click-chemistry for the rapid modification and functionalization of DNA and RNA.
Biography
Projects in the Das lab are multi-disciplinary and reflect collaborative efforts with the labs of Mark Macbeth (Carnegie Mellon University, Biological Sciences), Linda Peteanu, Bruce Armitage, Krzysztof Matyjaszewski (Carnegie Mellon University, Chemistry) and Vamsi Yadavalli (Virginia Commonwealth University, Chemical and Life Science Engineering).
Areas of Expertise
Media Appearances
Chemistry Outreach Catalyzes CMU Students To Share STEM Joy
Carnegie Mellon University News online
2023-03-03
Subha Das(opens in new window), an associate professor of chemistry who manages the department's outreach programs(opens in new window), agreed. "It's very important for students to learn about science communication," Das said. "Once you start trying to explain concepts of science to others it helps you think about the work in new ways."
Carnegie Mellon Exosome Engineering Tech Licensed to Coya Therapeutics
Carnegie Mellon University News online
2022-07-08
Sushil Lathwal, then a doctoral candidate in the Mellon College of Science(opens in new window)'s Department of Chemistry(opens in new window), and Saigopalakrishna (Sai) Yerneni, then a doctoral candidate in the College of Engineering(opens in new window)'s Department of Biomedical Engineering(opens in new window), came up with an idea to surmount these obstacles. They worked alongside researchers in the laboratories of Subha R. Das(opens in new window), associate professor of chemistry; Krzysztof Matyjaszewski(opens in new window), professor of natural sciences; and Phil Campbell(opens in new window), research professor of biomedical engineering, to create a method that engineers exosomes with a DNA-cholesterol tether. The synthetic single-stranded DNA on the tether can bind with a complementary strand of DNA linked to a bioactive agent.
Re-creating the flavor of soy sauce, and squeezing guacamole to keep it fresh
C&EN online
2022-08-28
When produce is cut—or smashed—its damaged cells release phenolic compounds that are polymerized with the help of PPO into bitter-tasting, brown pigments. It’s like the crud synthetic chemists often see at the bottom of their reaction flask, explains Subha Das, a chemist and food enthusiast at Carnegie Mellon University.
Students receive STEM awards
The Tartan online
2015-04-19
Jaycox is a junior biological sciences major. She conducts research with Sarah Gaffen, an immunology professor at the University of Pittsburgh who studies the immune response to bloodstream fungal infections. Jaycox also designs DNA nanoparticles made of backbone-branched DNA with Subha R. Das, an associate professor of chemistry at Carnegie Mellon.
Chemistry in the Kitchen
Pittsburgh Post-Gazette online
2010-11-04
Subha Ranjan Das has been an assistant chemistry professor at CMU since 2006. He is interested in all things science and is also an accomplished home cook.
Industry Expertise
Education
Auburn University
Ph.D
2000
Links
Patents
Nucleic acid-polymer conjugates for bright fluorescent tags
US10982266B2
2018-05-24
A composition includes a polymer including extending chains, side chains, or branches. One (or more) of a plurality of a first strand of nucleic acid is attached to each of a plurality of the side chains. One (or more) of a plurality of a second strand of nucleic acid, which is complementary to the first strand of nucleic acid, is complexed to each of the plurality of the first strand of nucleic acid to form a double strand of nucleic acid on each of the plurality of the side chains. At least one fluorescent compound is associated with the double strand of nucleic acid on each of the plurality of the side chains.
Extracellular Vesicle Functionalization Using Oligonucleotide Tethers
US20220145291A1
2022-05-12
Provided herein are tethered extracellular vesicles and methods of making tethered extracellular vesicles.
Articles
Visible-Light-Mediated Controlled Radical Branching Polymerization in Water
Angewandte Chemie International Edition2023
A water-soluble inibramer, sodium 2-bromoacrylate, triggered branching during photoinduced atom transfer radical polymerization of methacrylate monomers in the open air. As a result, well-defined branched polymers with controlled molecular weights, degrees of branching, and low dispersity values were obtained in water. The radical branching polymerization also exhibited spatial control and enabled the synthesis of branched polymer bioconjugates.
Engineering exosome polymer hybrids by atom transfer radical polymerization
Proceedings of the National Academy of Sciences2020
Exosomes are biological nanocarriers that offer several advantages over existing drug delivery vehicles because of their specialized abilities in intercellular communication. Attempts are being made to mimic and harness exosomes for exogenous drug delivery. However, exosomes have several inherent limitations that hinder their application as universal drug carriers. In this work, exosome polymer hybrids were prepared by precisely engineering the exosome surface with different synthetic polymers. These polymers can be easily tuned and modified to enhance the physicochemical profile of exosomes and overcome the existing limitations associated with ex vivo and in vivo stability and activity.
Atom Transfer Radical Polymerization for Biorelated Hybrid Materials
Biomacromolecules2019
Proteins, nucleic acids, lipid vesicles, and carbohydrates are the major classes of biomacromolecules that function to sustain life. Biology also uses post-translation modification to increase the diversity and functionality of these materials, which has inspired attaching various other types of polymers to biomacromolecules. These polymers can be naturally (carbohydrates and biomimetic polymers) or synthetically derived and have unique properties with tunable architectures.
Controlled Release of Exosomes Using Atom Transfer Radical Polymerization-Based Hydrogels
Biomacromolecules2022
Exosomes are 30–200 nm sized extracellular vesicles that are increasingly recognized as potential drug delivery vehicles. However, exogenous exosomes are rapidly cleared from the blood upon intravenous delivery, which limits their therapeutic potential. Here, we report bioactive exosome-tethered poly(ethylene oxide)-based hydrogels for the localized delivery of therapeutic exosomes. Using cholesterol-modified DNA tethers, the lipid membrane of exosomes was functionalized with initiators to graft polymers in the presence of additional initiators and crosslinker using photoinduced atom transfer radical polymerization (ATRP).
Biocatalytic “Oxygen-Fueled” Atom Transfer Radical Polymerization
Angewandte Chemie International Edition2018
Oxygen keeps polymerization alive: An oxygen-dependent atom transfer radical polymerization was accomplished through the biocatalytic mediation of radicals by a glucose oxidase/horseradish peroxidase system “orchestrated” by a Cu/tris(2-pyridylmethyl)amine (TPMA) catalyst (see picture; ACAC=acetylacetonate). This system provides polymers with high molecular weights and low dispersities, and is compatible with biologically relevant environments.
Research Focus
NUCLEIC ACIDS CHEMISTRY – LABELLING AND LIGATIONS
We have recently introduced "click-chemistry" for labeling or ligating RNA. Any RNA – not just synthetic RNA – can be labeled with another molecule or ligated to another RNA for the detection, handling or delivery or RNA. This powerful chemical tools enables a number of projects. One current project in this area seeks to label cellular RNA with different markers through which altered states or transport of the RNAs due to different environmental or epigenetic factors can be investigated.
NUCLEIC ACIDS NANO-BIO-TECHNOLOGY
Backbone branched DNA provides a simple and powerful avenue to engineer precisely the angles between DNA helices in self-assembled DNA nanostructures. We are exploring the design and construction of nanoscale DNA objects that have been inaccessible by traditional DNA nanotechnologies. Our ability to synthesize and functionalize DNA provides additional opportunities to enhance the function of these objects by incorporating metal or polymer nanoparticles or biomolecules. Polymer DNA hybrids synergistically capitalize on the power of polymeric materials with the tunable hybridization and reversible assembly properties of DNA.
SCIENCE EDUCATION AND COMMUNICATION
The Kitchen Chemistry Sessions course uses food and molecular cuisine to teach the concepts of chemistry and science. The use of food ingredients and their preparation in laboratory settings are based on the molecular properties. Modules based on water, fats/oils and lipids, carbohydrates, proteins and aroma volatiles and flavor compounds provide a context to highlight how chemical and scientific principles permeate students’ everyday life chemical concepts to a wide audience – from K-12 to non-science majors. Science majors are engaged with the cooking focus that serves to reinforce, re-organize, and extend students’ knowledge of chemistry and biochemistry. The food context also provides a significant opportunity to communicate and promote science concepts to the public. See Chemistry in the Kitchen (Pittsburgh Post-Gazette, Nov 4, 2010) and Carnegie Mellon's Kitchen Chemistry Course Makes Science Palatable (University Press Release, March 25, 2010) for more information.
BACKBONE BRANCHED RNAS
The process of splicing generates the correct messenger RNA for the cellular synthesis of proteins by removing non-coding intron sequences as 'lariats'. These lariat RNAs have a branched structure and have been long desired in order to investigate splicing and related processes. We have accomplished the synthesis of backbone branched RNAs and these provide a unique opportunity to investigate splicing and related processes such as debranching through biochemical assays and biophysical methods such as single-molecule spectroscopy.