hero image
Prof. Thomas Marsh - University of Warwick. Coventry, , GB

Prof. Thomas Marsh Prof. Thomas Marsh

Professor, Physics | University of Warwick


Tom Marsh researches accretion in, and the evolution of, binary stars, and the exploitation of ULTRACAM, a high-speed CCD camera.

Areas of Expertise (14)














Sky Phenomena

Selected Articles (5)

A Gaia Data Release 2 catalogue of white dwarfs and a comparison with SDSS

Monthly Notices of the Royal Astronomical Society

2019 We present a catalogue of white dwarf candidates selected from the second data release of Gaia (DR2). We used a sample of spectroscopically confirmed white dwarfs from the Sloan Digital Sky Survey (SDSS) to map the entire space spanned by these objects in the Gaia Hertzsprung-Russell diagram. We then defined a set of cuts in absolute magnitude, colour, and a number of Gaia quality flags to remove the majority of contaminating objects. Finally, we adopt a method analogous to the one presented in our earlier SDSS photometric catalogues to calculate a probability of being a white dwarf (PWD) for all Gaia sources that passed the initial selection. The final catalogue is composed of 486 641 stars with calculated PWD from which it is possible to select a sample of {̃eq } 260 000 high-confidence white dwarf candidates in the magnitude range 8 < G < 21. By comparing this catalogue with a sample of SDSS white dwarf candidates, we estimate an upper limit in completeness of 85 per cent for white dwarfs with G ≤ 20 mag and Teff >7000 K, at high Galactic latitudes (|b| > 20°). However, the completeness drops at low Galactic latitudes, and the magnitude limit of the catalogue varies significantly across the sky as a function of Gaia's scanning law. We also provide the list of objects within our sample with available SDSS spectroscopy. We use this spectroscopic sample to characterize the observed structure of the white dwarf distribution in the H-R diagram.

view more

A planetesimal orbiting within the debris disc around a white dwarf star


2019 Many white dwarf stars show signs of having accreted smaller bodies, implying that they may host planetary systems. A small number of these systems contain gaseous debris discs, visible through emission lines. We report a stable 123.4-minute periodic variation in the strength and shape of the Ca II emission line profiles originating from the debris disc around the white dwarf SDSS J122859.93+104032.9. We interpret this short-period signal as the signature of a solid-body planetesimal held together by its internal strength.

view more

The Gaia DR1 mass-radius relation for white dwarfs

Monthly Notices of the Royal Astronomical Society

2017 The Gaia Data Release 1 (DR1) sample of white dwarf parallaxes is presented, including six directly observed degenerates and 46 white dwarfs in wide binaries. This data set is combined with spectroscopic atmospheric parameters to study the white dwarf mass-radius relationship (MRR). Gaia parallaxes and G magnitudes are used to derive model atmosphere-dependent white dwarf radii, which can then be compared to the predictions of a theoretical MRR. We find a good agreement between Gaia DR1 parallaxes, published effective temperatures (Teff) and surface gravities (log g), and theoretical MRRs. As it was the case for Hipparcos, the precision of the data does not allow for the characterization of hydrogen envelope masses. The uncertainties on the spectroscopic atmospheric parameters are found to dominate the error budget and current error estimates for well-known and bright white dwarfs may be slightly optimistic. With the much larger Gaia DR2 white dwarf sample, it will be possible to explore the MRR over a much wider range of mass, Teff, and spectral types.

view more

A massive pulsar in a compact relativistic binary


2013 Many physically motivated extensions to general relativity (GR) predict substantial deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 ± 0.04 solar mass (M☉) pulsar in a 2.46-hour orbit with a 0.172 ± 0.003 M☉ white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling.

view more

Common envelope evolution: Where we stand and how we can move forward

The Astronomy and Astrophysics Review

2013 This work aims to present our current best physical understanding of common-envelope evolution (CEE). We highlight areas of consensus and disagreement, and stress ideas which should point the way forward for progress in this important but long-standing and largely unconquered problem. Unusually for CEE-related work, we mostly try to avoid relying on results from population synthesis or observations, in order to avoid potentially being misled by previous misunderstandings. As far as possible we debate all the relevant issues starting from physics alone, all the way from the evolution of the binary system immediately before CEE begins to the processes which might occur just after the ejection of the envelope. In particular, we include extensive discussion about the energy sources and sinks operating in CEE, and hence examine the foundations of the standard energy formalism. Special attention is also given to comparing the results of hydrodynamic simulations from different groups and to discussing the potential effect of initial conditions on the differences in the outcomes. We compare current numerical techniques for the problem of CEE and also whether more appropriate tools could and should be produced (including new formulations of computational hydrodynamics, and attempts to include 3D processes within 1D codes). Finally we explore new ways to link CEE with observations. We compare previous simulations of CEE to the recent outburst from V1309 Sco, and discuss to what extent post-common-envelope binaries and nebulae can provide information, e.g. from binary eccentricities, which is not currently being fully exploited.

view more