Saving Lives, One Device at a Time: Clinical Engineering

Expert caregivers keep nearly 50,000 pieces of medical equipment in top-notch shape

Aug 12, 2024

3 min

Blake Collins, MBA, CBET, CHTM

Behind every health care provider, or perhaps already in the palms of their hands, is a piece of equipment necessary to their patient’s health and survival. Modern medical treatment relies on complex equipment to keep patients alive and healthy during procedures and recovery. Take live-saving equipment such as telemetry monitors, MRI machines and ventilators as just a few examples.


But what happens when all that equipment needs repair?



Enter ChristianaCare’s clinical engineering technicians. This team of 35 employees — one of the largest clinical engineering teams in the nation — is responsible for overseeing the care, testing and repair of the roughly 50,000 pieces of medical equipment in use throughout the ChristianaCare system.


The Clinical Engineering team is overseen by Director Blake Collins, MBA, CBET, CHTM, nationally recognized for excellence in the profession. He brings two decades of experience as a clinical engineer in the United States Navy, seven of which were served with the U.S. Marine Corps, to his role. His team has won numerous trade industry awards for its success as a “solutions provider” for the health system.


"Think of health care as a triangle,” said Collins. “You have the patient, the provider and the equipment. You can’t have successful health care delivery without those three elements.”


Begun in the 1970s as the hospital system’s “TV repair shop,” he joked, the Clinical Engineering department evolved dramatically after subsequent national developments in electrical safety testing and oversight for the care and functionality of medical equipment.


‘Everyone truly cares’

Today, the Clinical Engineering department maintains close to 50,000 pieces of medical equipment throughout the ChristianaCare system, including its three hospitals and all its imaging centers. “From thermometers to linear accelerators, MRIs, CTs — we manage all of it,” Collins said. Last year, the team completed 25,000 work orders, or roughly 2,100 per month.


“We get to help people in so many different ways,” said John Learish, Clinical Engineering manager.


Samantha Daws, Clinical Engineering supervisor, echoed the sentiment. “The Clinical Engineering Department within ChristianaCare is the most talented group of technicians I have ever had the privilege to work with,” she said.


“Everyone truly cares about keeping the equipment working to ensure all caregivers have what is needed to provide quality health care to our community.”


Saving lives, one device at a time

What’s so important about what Clinical Engineering offers to ChristianaCare? In short: Anyone could need medical care at any time, and if medical equipment were out of commission or wrongly calibrated, lives would be at stake.


Collins recalls a pivotal moment during his tenure in the Navy, when he needed an emergency appendectomy while stationed on board an aircraft carrier. “I was the only biomedical technician on the ship,” he said. “And the doctor doing the procedure asked me, jokingly, ‘Hey Collins, is this equipment going to work?’


“He was kidding, but it’s true that we never know when we or a loved one is going to end up under the equipment that we work on as engineers.”


This experience gained new significance for Collins after successful open-heart surgery at ChristianaCare in 2022 — followed by his mother, who had the same procedure, also successfully, in 2023.


“I had not one inkling or shadow of a doubt that the equipment was going to work fine,” he said. “You never know who will end up needing care. So we take it very, very seriously.”


Icon in the field

For his outstanding service as Director of Clinical Engineering at ChristianaCare, Collins was presented with the 2024 John D. Hughes Iconoclast Award from the Association for the Advancement of Medical Instrumentation (AAMI), a career-marking honor in health care technology management.



The award recognizes innovation and leadership in the field; for Collins, it shows how well the Clinical Engineering team works together to deliver safe medical equipment across the ChristianaCare system.


“Blake has been a relentless advocate for ChristianaCare,” read his nomination. “He has implemented numerous initiatives and processes to improve his department … and work smarter through the use of technology and automation.”


The next time you see a ChristianaCare provider pick up an instrument or turn on a machine, think about the Clinical Engineering team — and rest assured that your equipment is ready to go.

Connect with:
Blake Collins, MBA, CBET, CHTM

Blake Collins, MBA, CBET, CHTM

Director of Clinical Engineering

Blake Collins is an expert in clinical engineering, leading one of the largest teams in the United States.

Clinical Engineering

You might also like...

Check out some other posts from ChristianaCare

3 min

ChristianaCare Launches Organoid Core to Personalize Cancer Treatment

ChristianaCare’s Cawley Center for Translational Cancer Research has unveiled a first-of-its-kind organoid core in a community cancer center program. The new laboratory facility within the Helen F. Graham Cancer Center & Research Institute grows and tests living, patient-derived tumor models, giving doctors and researchers a faster, more precise way to identify the therapies most likely to work for each patient. This innovation could change how cancer is treated in Delaware and serve as a model for community centers nationwide. There are only a handful of organoid core centers, or “tumor-on-a-chip” programs, in the United States, and ChristianaCare’s is the first within a community cancer center setting. What the Organoid Core Does Tumor organoids are tiny, three-dimensional cultures grown from a patient’s tumor tissue. They preserve the genetic and molecular traits of the original tumor, making them far more accurate than traditional cell lines. “These mini-tumors enable researchers to screen drugs faster, identify new biomarkers and discover which treatments are most likely to work for each patient,” said Thomas Schwaab, M.D., Ph.D., Bank of America Endowed Medical Director of ChristianaCare’s Helen F. Graham Cancer Center and Research Institute. “This core is a bridge between the lab and the clinic. By growing living tumor models from cells of individual patients, we can test real-world drug responses and tailor treatments for them in ways that were not possible before.” How It Advances Patient Care The organoid core strengthens the Cawley Center's research capabilities by enabling drug screening and biomarker discovery. It will bank organoids representing the wide variety of tumors seen in the community, giving scientists a realistic system for testing therapies. ChristianaCare treats more than 70 percent of cancer patients in Delaware, giving researchers unique access to treatment-naïve samples. These are tumor tissues that have not yet been exposed to chemotherapy or other therapies. Studying them provides a more accurate picture of how cancer behaves naturally and how it might respond to new treatments. Bringing a new cancer drug to patients is expensive and risky. Estimates show it can cost $1.3 to $2.8 billion, with up to a third spent on preclinical development, and only about one in 10 compounds ever reach human trials. Traditional mouse models often fail to fully mimic human tumors, making early testing less reliable. By using organoid screening, the Cawley Center can test therapies more accurately, reduce costs and failure rates and move promising treatments into clinical trials faster. Combined with existing tissue collection programs, clinical trial infrastructure and community partnerships, these resources create a direct pathway to bring lab discoveries to patients faster. Turning Point in Translational Research “Our goal is to shorten the distance between discovery and treatment,” said Nicholas J. Petrelli, M.D., director of the Cawley Center. “Too many promising drugs fail because early models do not capture the complexity of real tumors. The organoid core helps solve that problem. We can now test therapies in models that reflect the patients we actually serve.” “This is a turning point for translational research in community health,” said Jennifer Sims Mourtada, Ph.D., associate director at the Cawley Center. “Organoid technology lets us study cancer in a way that feels personal. We are not just looking at data points. We are studying living models of a patient’s tumor, which can reveal how that person’s cancer might behave or respond to treatment. This approach brings science closer to the people it is meant to help.” Looking Ahead In the coming months, the organoid core will focus on building a diverse biobank of tumors common in Delaware. Plans include collaborations with academic institutions, shared access for external researchers, and development of immune-tumor co-culture models. By combining advanced technology, strong community partnerships and direct patient access, ChristianaCare and the Cawley Center are showing how translational cancer research can thrive in a community setting, making breakthroughs not only in the lab but also in patients’ lives.

3 min

ChristianaCare Gene Editing Institute Achieves CRISPR Breakthrough That Reverses Chemotherapy Resistance in Lung Cancer

In a major step forward for cancer care, researchers at ChristianaCare’s Gene Editing Institute have shown that disabling the NRF2 gene with CRISPR technology can reverse chemotherapy resistance in lung cancer. The approach restores drug sensitivity and slows tumor growth. The findings were published Nov. 13, 2025 in the online edition of Molecular Therapy Oncology. This breakthrough stems from more than a decade of research by the Gene Editing Institute into the NRF2 gene, a known driver of treatment resistance. The results were consistent across multiple in vitro studies using human lung cancer cell lines and in vivo animal models. “We’ve seen compelling evidence at every stage of research,” said Kelly Banas, Ph.D., lead author of the study and associate director of research at the Gene Editing Institute. “It’s a strong foundation for taking the next step toward clinical trials.” Potential Beyond Lung Cancer The study focused on lung squamous cell carcinoma, an aggressive and common form of non-small cell lung cancer (NSCLC) that accounts for 20% to 30% of all lung cancer cases, according to the American Cancer Society. It’s estimated that over 190,000 people in the U.S. will be diagnosed in 2025. While the research centered on this cancer type, the implications are broader. Overactive NRF2 contributes to chemotherapy resistance in several solid tumors, including liver, esophageal and head and neck cancers. The results suggest a CRISPR-based strategy targeting NRF2 could help resensitize a wide range of treatment-resistant tumors to standard chemotherapy. “This is a significant step toward overcoming one of the biggest challenges in cancer therapy — drug resistance,” Banas said. “By targeting a key transcription factor that drives resistance, we’ve shown that gene editing can re-sensitize tumors to standard treatment. We’re hopeful that in clinical trials and beyond, this is what will allow chemotherapy to improve outcomes for patients and could enable them to remain healthier during the entirety of their treatment regimen.” Targeting a Master Switch for Resistance The research zeroed in on a tumor-specific mutation, R34G, in the NRF2 gene, which acts as a master regulator of cellular stress responses. When overactive, NRF2 helps cancer cells withstand chemotherapy. Using CRISPR/Cas9, the team engineered lung cancer cells with the R34G mutation and successfully knocked out NRF2. This restored sensitivity to chemotherapy drugs such as carboplatin and paclitaxel. In animal models, tumors directly treated with CRISPR to knockout NRF2 grew more slowly and responded better to treatment. “This work brings transformational change to how we think about treating resistant cancers,” said Eric Kmiec, Ph.D., senior author of the study and executive director of the Gene Editing Institute. “Instead of developing entirely new drugs, we are using gene editing to make existing ones effective again.” Editing Reaches Threshold Levels One of the most promising discoveries was that disrupting NRF2 in just 20% to 40% of tumor cells, was enough to improve the response to chemotherapy and shrink tumors. This insight is particularly relevant for clinical use, where editing every cancer cell may not be feasible. To test therapy in mice, the researchers used lipid nanoparticles (LNPs), a non-viral method with high efficiency and low risk of unintended, off-target effects. Sequencing confirmed that the edits were highly specific to the mutated NRF2 gene, with minimal unintended changes elsewhere in the genome. “The power of this CRISPR therapy lies in its precision. It’s like an arrow that hits only the bullseye,” said Banas. “This level of specificity with minimal unanticipated genomic side effects offers real hope for the cancer patients who could one day receive this treatment.”

3 min

New Outpatient Cardiology Practice at Wilmington Hospital Expands Access to Life-Saving Care for Patients with Peripheral Artery Disease

With the opening of a new cardiology practice at its Wilmington campus, ChristianaCare is bringing life-saving treatment for peripheral artery disease (PAD) closer to home for people who live in and around the city of Wilmington. Peripheral artery disease happens when plaque builds up in the arteries and limits blood flow to the legs. This can cause pain, cramping and difficulty walking. If left untreated, it can lead to serious problems like limb loss, heart attack or stroke. “We’re on a mission to improve the heart and vascular health of our community, and one of the key ways we do that is to identify where people need access to care and ensure that it’s convenient, high-quality and accessible. ChristianaCare’s expansion of cardiology services to the Wilmington campus has made it easier for patients in Wilmington and the surrounding community to receive excellent heart and vascular care,” said Kirk Garratt, M.D., MSc, medical director of the Center for Heart and Vascular Health. “Importantly, it’s part of a multi-disciplinary effort to bring a focus on PAD that includes vascular surgery and interventional radiology. We’re expanding those services in the Wilmington community, too.” In Delaware, an estimated 45,000 to 50,000 people are living with PAD. The condition is more common among older adults and those with diabetes, high blood pressure or a history of smoking, all of which are widespread in the state. Because symptoms can be subtle, many people may not know they have it. That’s why awareness and early diagnosis are so important. Anyone who experiences leg pain, numbness or slow-healing sores should talk with their doctor. A simple test can measure blood flow, and with the right treatment or lifestyle changes, people can ease symptoms and lower their risk of serious complications. The new practice, located in the Gateway Building at Wilmington Hospital, 501 West 14th Street, 4th Floor, offers convenient access to diagnosis and treatment in the heart of the city. The practice is open on Wednesdays from 8 a.m. to 12 p.m., and hours will be adjusted based on patient demand. Meet the Cardiologist: Dr. Vikashsingh Rambhujun Board-certified interventional cardiologist Vikashsingh Rambhujun, MBBS, has cared for ChristianaCare patients for more than a decade and now sees patients at the Wilmington practice. Rambhujun earned his medical degree from SSR Medical College in Mauritius. He completed his residency in internal medicine at the NYU Grossman Long Island School in New York and did his fellowship in cardiovascular medicine and interventional cardiology at ChristianaCare. Rambhujun also spent a year doing interventional cardiology and endovascular medicine and interventions at Yale University Hospital in New Haven, Connecticut. His research has been published widely in medical journals. Rambhujun aims to help patients manage PAD before it becomes advanced. When appropriate, he can perform minimally invasive catheter-based procedures to open blockages in the arteries. “We have new patients with blockages that haven’t progressed to the point that they need a procedure, which is where we want to catch them,” Rambhujun said. “We can manage their cholesterol, blood pressure and other risk factors to prevent disease from progressing.” When Rambhujun began practicing in Wilmington, he made it a priority to speak at local community meetings, raising awareness about the warning signs of heart and vascular disease. His message is simple but urgent: don’t wait; seek treatment early. “We’re trying to help people keep their toes and feet,” he said. “When we treat blockages from peripheral artery disease, the difference can be dramatic,” he said. “Patients who once struggled to walk even a short distance because of pain can leave the hospital able to move freely again. Helping someone reclaim their basic freedoms to walk, stay active and enjoy life is incredibly rewarding.”

View all posts