Multi-sector partnership leads to first practical pilot of vehicle-to-grid power

Electric utility fleet of EVs will begin providing power to balance electric grid

Oct 3, 2024

4 min

Willett Kempton


A multi-pronged effort led by corporations, industry associations and an academic research institution has launched the first practical pilot project of “vehicle-to-grid” power (V2G) set up so that industrial participants can scale it at low cost.


Invented by the University of Delaware, V2G uses batteries in parked EVs to support the electric grid or to provide backup during power failures. This pilot is the first targeted toward large scale expansion, because it follows standards (by SAE and UL), uses production EVs (with UD modifications), complies with utility requirements, and qualifies for wholesale power markets. The pilot has been implemented by Delmarva Power (an Exelon Company), working with UD.


The project has set up an electric utility fleet of EVs to begin providing power to balance the electric grid, using Ford Mach-E EVs in the Delmarva Power fleet, and following new rules of the Federal Energy Regulatory Commission (FERC) for distributed energy resources. These Delmarva Power fleet vehicles are driving for utility operations during normal work schedule and provide wholesale grid services for PJM Interconnection when parked.


The cooperative effort was organized by Prof. Willett Kempton, originator of the V2G concept. Kempton said the resulting demonstration is significant because it shows a cost-effective pathway for standards based, regulatory-compliant, mass-manufactured V2G.


“Our close collaboration with Ford Motor, based on our joint Memorandum of Understanding, was very productive. Ford engineers’ advice helped us fully integrate the car’s CAN communications with LIN-CP,” Kempton said. “Ford already markets a production EV with home backup power, and they have a sophisticated understanding of potential EV synergies with the electric power grid. We hope that collaborations like this will also help OEMs like Ford to see a path to incorporation of these new standards and technologies into production EVs.”


The new standard for V2G signal definitions were finalized and approved just this year thanks to UD Research Professor Rodney McGee, Task Force Chair of the SAE standards development for J3400 (NACS) and J3068. (SAE was formerly called Society of Automotive Engineers.)


“These standards define the signaling to standardize low-cost AC charging, with all the functionality needed for safe operation of V2G and backup power from an EV. Both these standards implement a signaling method that is new to EV charging, called LIN-CP, yet is built from easy-to-implement automotive technologies,” McGee said.


UD’s MOU with Ford Motor Company allowed the two parties to cooperate on implementing sophisticated signaling for low-cost, high-functionality V2G. UD designed a retrofit package for proof of concept. The design was led by UD Postdoc Garrett Ejzak and used a bidirectional on-board charger and the new LIN-CP commands to make the Mach-E capable of sophisticated V2G. After testing at UD, the design was installed in four Delmarva Power fleet Mach-Es, to test these systems in a real-world fleet operating environment.


In addition to proving these new SAE standards, this project also shows that EVs can be high-value grid services providers to the electric system under the new FERC Order 2222 regulations. This new Federal rule enables small resources to collectively participate in electric markets to make the electric grid more reliable and more capable of incorporating fluctuating renewable power sources. PJM Interconnection, which manages the electric grid over 13 states, is participating under a Pilot Project agreement with the Delmarva Power demonstration, as an early proof of PJM’s new rules to meet FERC Order 2222 compliance.


“The use of virtual power plants, such as aggregations of electric vehicles, is an emerging resource type that can contribute to managing the energy transition by providing flexibility and other services needed to reliably operate the power grid,” said Scott Baker, Sr. Business Solution Analyst – Applied Innovation for PJM. “We look forward to working with Delmarva Power and the project team to test the technical capabilities of V2G electric vehicles and understand how this use case integrates with PJM’s new market construct for virtual power plants and DER Aggregators.”


Delmarva Power’s parent company, Exelon Corporation, is also a partner providing support for the project.


Project partner Nuvve Holding Corporation (Nuvve) updated their charging stations for full LIN-CP and V2G capabilities. Then project partner Delmarva Power installed four Nuvve charging stations at their facility in Newark, Delaware. The four individual Mach-Es are virtually combined into one V2G “power plant” by aggregation software from Nuvve Holdings. Nuvve CEO Gregory Poilasne described this:


“Our Nuvve charging stations now talk LIN-CP and implement the new SAE standards. This enables our GIVe aggregator software to tap high functionality V2G EVs,” Poilasne said. “By combining EVs as a single power resource, our technology is already serving as a “Distributed Energy Resource Aggregator” as specified by FERC Order 2222.”


The EVs’ performance and provision of grid services will be monitored over the next year by UD and Nuvve to provide documentation on their use both as fleet vehicles and as grid resources.

Connect with:
Willett Kempton

Willett Kempton

Professor, Marine Science and Policy

Prof. Kempton invented vehicle-to-grid power (V2G); he researches, publishes and lectures on offshore wind power and on electric vehicles.

Vehicle-to-Grid PowerOffshore Wind Policy

You might also like...

Check out some other posts from University of Delaware

2 min

Holiday shopping season set to begin with questions about Black Friday, consumer behavior

Is Black Friday still a thing? Online sales have been outpacing brick-and-mortar sales for years, resulting in shorter lines and less of a frenzy at stores on the day after Thanksgiving. Many stores have also gone online with deals to compliment in-person shopping. University of Delaware experts can comment on this and other topics related to the holiday shopping season and gift-buying behavior. Andong Cheng: Can provide tips on what to prepare for during this unique holiday shopping season. Her research focuses on defining and identifying the picky consumer segment, and explores how pickiness impacts other judgments and decisions. She advises consumers to consider the phenomenon of double mental discounting, where shoppers experience a “mental accounting phenomenon” when offered promotional credit. Jackie Silverman: Research examines several facets of judgment and decision making and consumer psychology. According to Silverman, there are many potential benefits of online shopping for consumers, including some unconventional approaches to gift giving this season. Philip Gable: Can talk about the science behind the art of gift-giving that goes beyond the material exchange — emotional nuances that also can be applied to charitable work and philanthropy. He says that significance contributes to the happiness we experience in gift-giving. Matthew McGranaghan: Studies the economics of consumer attention and the indirect effects of marketing interventions. He explains that there is a difference in how businesses are innovating and utilizing online retail methods to connect with consumers this holiday season. Bintong Chen: Can discuss the systematic nature of supply chain issues. He recommends shoppers use major retailers like Amazon and Walmart, whose companies use their own shipping fleets to minimize disruptions. Caroline Swift: Examines supply chain transparency and the interactions between regulation and business performance.

3 min

Researchers race to detect Alzheimer's sooner using $3.9M grant

Too often, people learn they have Alzheimer’s disease when it’s too late. The changes in the brain that lead to the disease manifesting with symptoms have already been occurring for decades. Researchers at the University of Delaware will attempt to detect the disease sooner through a new study that examines changes in the arteries and brain tissue in midlife adults in their 50s and 60s. The findings of this work, funded by a nearly $4 million grant from the National Institute on Aging (NIA), could identify the earliest mechanisms linking vascular aging to the loss of brain tissue integrity, leading to new targets for interventions aimed at preventing age-related cognitive impairment. “People who develop high blood pressure or stiffening of the aorta and carotid arteries in midlife are at a much higher risk for developing cognitive impairment or dementia in late life,” said Christopher Martens, the principal investigator of the study. Martens, an associate professor of kinesiology and applied physiology in UD's College of Health Sciences and director of the Delaware Center for Cognitive Aging (DECCAR), is working closely with Curtis Johnson, an associate professor of biomedical engineering in the College of Engineering and leader of the neuroimaging biomarker core within DECCAR, on research funded by a nearly $4 million grant from the National Institute on Aging (NIA), a division of the National Institutes of Health (NIH). “A lot happens as we age, so we’re aiming to pinpoint the timing and exact mechanisms that cause these changes in midlife adults,” Martens said. This latest grant extends DECCAR’s ongoing Delaware Longitudinal Study for Alzheimer’s Prevention (DeLSAP), which seeks to study how risk and protective factors for dementia are related and change over time. Those eligible for DeLSAP could also meet the criteria for participating in the new study. In his Neurovascular Aging Laboratory, Martens studies mechanisms leading to the stiffening of arteries, while Johnson is specifically interested in measuring the stiffness of the brain. “As a person ages, the brain gets softer and breaks down, and we’re looking to see whether changes in arterial stiffness and patterns of blood flow in the brain cause this decline,” Johnson said. Changes in blood flow to the brain come from controllable factors. Smoking, cardiovascular health, diet and exercise all impact blood flow positively and negatively. “A lot of aging research is done at the end of life,” Johnson said. “We want to look at midlife and try to predict what happens later in life so we can prevent it.” While the brain gets softer with age, arteries get stiffer. “We hypothesize that midlife increases in stiffness in blood vessels cause damaging pulsatile pressure to enter the brain,” Martens said. “We believe this is one of the reasons we start to develop cognitive issues at an older age because the brain is exposed to increased pressure; that pressure is likely inflicting damage on surrounding brain tissue.” In Johnson’s Mechanical Neuroimaging Lab, researchers will use high-resolution magnetic resonance elastography (MRE) to determine where brain damage occurs and what specific brain structures may be affected. “From an MRI perspective, most researchers look at AD and other neurodegenerative diseases like multiple sclerosis with an emphasis on detection in a hospital setting,” Johnson said. “Using highly specialized techniques we’ve developed, we focus on the earlier side and how these changes progress into disease from the neuroscience side, emphasizing prevention.” Together, they’ll seek to learn whether arterial stiffness causes the kind of cognitive impairment seen in AD or whether the decline is associated with a loss in the integrity of brain tissue. “If we can prove arterial stiffness is playing a causal role in cognitive aging, that would provide further support for focusing on blood vessel health as an intervention for delaying AD or other forms of dementia versus solely focusing on the brain,” Martens said.

1 min

International Education Week: University of Delaware leads the way in global studies

The University of Delaware has a lot to boast about in regards to International Education Week, which takes place from Nov. 18-22. This includes a four-year academic program that immerses students in both culture and classrooms of host countries; a mentoring program for international students on UD's campus; and the oldest study abroad program in the nation. UD's World Scholars program offers students a four-year global education that begins with a semester of study in Greece, Italy, England, New Zealand or Spain where students earn credits in their majors while becoming immersed in the culture and history of the respective host country. The 101-year-old Study Abroad Program – the oldest program founded by a U.S. institution – offers programs in 40 countries. More than 30 percent of UD undergraduates study abroad at least once, and while one in 10 American students study abroad, at UD the number is 3 in 10. Finally, UD’s Center for Global Programming and Services offers the iBuddy Mentoring Program, which pairs incoming international students with trained and experienced UD student mentors. After undergoing iBuddy training, these mentors offer friendship and guidance on academic matters, social life, housing options and more. They also organize events to help them get socialized.

View all posts