Multi-sector partnership leads to first practical pilot of vehicle-to-grid power

Electric utility fleet of EVs will begin providing power to balance electric grid

Oct 3, 2024

4 min

Willett Kempton


A multi-pronged effort led by corporations, industry associations and an academic research institution has launched the first practical pilot project of “vehicle-to-grid” power (V2G) set up so that industrial participants can scale it at low cost.


Invented by the University of Delaware, V2G uses batteries in parked EVs to support the electric grid or to provide backup during power failures. This pilot is the first targeted toward large scale expansion, because it follows standards (by SAE and UL), uses production EVs (with UD modifications), complies with utility requirements, and qualifies for wholesale power markets. The pilot has been implemented by Delmarva Power (an Exelon Company), working with UD.


The project has set up an electric utility fleet of EVs to begin providing power to balance the electric grid, using Ford Mach-E EVs in the Delmarva Power fleet, and following new rules of the Federal Energy Regulatory Commission (FERC) for distributed energy resources. These Delmarva Power fleet vehicles are driving for utility operations during normal work schedule and provide wholesale grid services for PJM Interconnection when parked.


The cooperative effort was organized by Prof. Willett Kempton, originator of the V2G concept. Kempton said the resulting demonstration is significant because it shows a cost-effective pathway for standards based, regulatory-compliant, mass-manufactured V2G.


“Our close collaboration with Ford Motor, based on our joint Memorandum of Understanding, was very productive. Ford engineers’ advice helped us fully integrate the car’s CAN communications with LIN-CP,” Kempton said. “Ford already markets a production EV with home backup power, and they have a sophisticated understanding of potential EV synergies with the electric power grid. We hope that collaborations like this will also help OEMs like Ford to see a path to incorporation of these new standards and technologies into production EVs.”


The new standard for V2G signal definitions were finalized and approved just this year thanks to UD Research Professor Rodney McGee, Task Force Chair of the SAE standards development for J3400 (NACS) and J3068. (SAE was formerly called Society of Automotive Engineers.)


“These standards define the signaling to standardize low-cost AC charging, with all the functionality needed for safe operation of V2G and backup power from an EV. Both these standards implement a signaling method that is new to EV charging, called LIN-CP, yet is built from easy-to-implement automotive technologies,” McGee said.


UD’s MOU with Ford Motor Company allowed the two parties to cooperate on implementing sophisticated signaling for low-cost, high-functionality V2G. UD designed a retrofit package for proof of concept. The design was led by UD Postdoc Garrett Ejzak and used a bidirectional on-board charger and the new LIN-CP commands to make the Mach-E capable of sophisticated V2G. After testing at UD, the design was installed in four Delmarva Power fleet Mach-Es, to test these systems in a real-world fleet operating environment.


In addition to proving these new SAE standards, this project also shows that EVs can be high-value grid services providers to the electric system under the new FERC Order 2222 regulations. This new Federal rule enables small resources to collectively participate in electric markets to make the electric grid more reliable and more capable of incorporating fluctuating renewable power sources. PJM Interconnection, which manages the electric grid over 13 states, is participating under a Pilot Project agreement with the Delmarva Power demonstration, as an early proof of PJM’s new rules to meet FERC Order 2222 compliance.


“The use of virtual power plants, such as aggregations of electric vehicles, is an emerging resource type that can contribute to managing the energy transition by providing flexibility and other services needed to reliably operate the power grid,” said Scott Baker, Sr. Business Solution Analyst – Applied Innovation for PJM. “We look forward to working with Delmarva Power and the project team to test the technical capabilities of V2G electric vehicles and understand how this use case integrates with PJM’s new market construct for virtual power plants and DER Aggregators.”


Delmarva Power’s parent company, Exelon Corporation, is also a partner providing support for the project.


Project partner Nuvve Holding Corporation (Nuvve) updated their charging stations for full LIN-CP and V2G capabilities. Then project partner Delmarva Power installed four Nuvve charging stations at their facility in Newark, Delaware. The four individual Mach-Es are virtually combined into one V2G “power plant” by aggregation software from Nuvve Holdings. Nuvve CEO Gregory Poilasne described this:


“Our Nuvve charging stations now talk LIN-CP and implement the new SAE standards. This enables our GIVe aggregator software to tap high functionality V2G EVs,” Poilasne said. “By combining EVs as a single power resource, our technology is already serving as a “Distributed Energy Resource Aggregator” as specified by FERC Order 2222.”


The EVs’ performance and provision of grid services will be monitored over the next year by UD and Nuvve to provide documentation on their use both as fleet vehicles and as grid resources.

Connect with:
Willett Kempton

Willett Kempton

Professor, Marine Science and Policy

Prof. Kempton invented vehicle-to-grid power (V2G); he researches, publishes and lectures on offshore wind power and on electric vehicles.

Vehicle-to-Grid PowerOffshore Wind Policy

You might also like...

Check out some other posts from University of Delaware

2 min

Researchers laying the groundwork to eventually detect cerebral palsy via blood test

At the University of Delaware, molecular biologist Mona Batish in collaboration with Dr. Robert Akins at Nemours Children Hospital, is studying tiny loops in our cells called circular RNAs — once thought to be useless leftovers, but now believed to play an important role in diseases like cancer and cerebral palsy (CP). This is detailed in a new article in the Journal of Biological Chemistry. What are circular RNAs? They’re a special type of RNA that doesn’t make proteins but instead helps control how genes are turned on and off. Because they’re stable and can be found in blood, they may help doctors detect diseases more easily. So what’s the connection to cerebral palsy? CP is the most common physical disability in children, but right now it’s diagnosed only after symptoms appear — there’s no clear-cut test for it. Batish and her team are trying to change that. Working with researchers at Nemours Children’s Health, Batish discovered that in children with CP, a certain circular RNA — circNFIX — is found at much lower levels in muscle cells. This RNA normally helps the body make an important muscle-building protein called MEF2C. When circNFIX is missing or low, MEF2C isn’t made properly, which may lead to the weakened, shorter muscles seen in CP. This is the first time researchers have shown a link between circular RNAs and human muscle development in cerebral palsy. Why does this matter? If scientists can confirm this link, it could lead to: Earlier and more accurate diagnosis of CP using a simple blood test New treatments that help improve muscle development in affected children Batish’s ultimate goal? To create a test that can spot CP at birth — or even before — giving kids a better shot at early treatment and a higher quality of life. To speak to Batish, contact mediarelations@udel.edu. 

3 min

AI-powered model predicts post-concussion injury risk in college athletes

Athletes who suffer a concussion have a serious risk of reinjury after returning to play, but identifying which athletes are most vulnerable has always been a bit of a mystery, until now. Using artificial intelligence (AI), University of Delaware researchers have developed a novel machine learning model that predicts an athlete’s risk of lower-extremity musculoskeletal (MKS) injury after concussion with 95% accuracy. A recent study published in Sports Medicine details the development of the AI model, which builds on previously published research showing that the risk of post-concussion injury doubles, regardless of the sport. The most common post-concussive injuries include sprains, strains, or even broken bones or torn ACLs. “This is due to brain changes we see post-concussion,” said Thomas Buckley, professor of kinesiology and applied physiology at the College of Health Sciences. These brain changes affect athletes’ balance, cognition, and reaction times and can be difficult to detect in standard clinical testing. “Even a minuscule difference in balance, reaction time, or cognitive processing of what’s happening around you can make the difference between getting hurt and not,” Buckley said. How AI is changing injury risk assessment Recognizing the need for enhanced injury reduction risk tools, Buckley collaborated with colleagues in UD’s College of Engineering, Austin Brockmeier, assistant professor of electrical and computer engineering, and César Claros, a fourth-year doctoral student; Wei Qian, associate professor of statistics in the College of Agriculture and Natural Resources; and former KAAP postdoctoral fellow Melissa Anderson, who’s now an assistant professor at Ohio University. To assess injury risk, Brockmeier and Claros developed a comprehensive AI model that analyzes more than 100 variables, including sports and medical histories, concussion type, and pre- and post-concussion cognitive data. “Every athlete is unique, especially across various sports,” said Brockmeier. “Tracking an athlete’s performance over time, rather than relying on absolute values, helps identify disturbances, deviations, or deficits that, when compared to their baseline, may signal an increased risk of injury.” While some sports, such as football, carry higher injury risk, the model revealed that individual factors are just as important as the sport played. “We tested a version of the model that doesn’t have access to the athlete’s sport, and it still accurately predicted injury risk,” Brockmeier said. “This highlights how unique characteristics—not just the inherent risks of a sport—play a critical role in determining the likelihood of future injury,” said Brockmeier. The research, which tracked athletes over two years, also found that the risk of MSK injury post-concussion extends well into the athlete’s return to play. “Common sense would suggest that injuries would occur early in an athlete’s return to play, but that’s simply not true,” said Buckley. “Our research shows that the risk of future injury increases over time as athletes compensate and adapt to small deficits they may not even be aware of.” The next step for Buckey’s Concussion Research Lab is to further collaborate with UD Athletics’ strength and conditioning staff to design real-time interventions that could reduce injury risk. Beyond sports: AI’s potential in aging research The implications of the UD-developed machine-learning model extend far beyond sports. Brockmeier believes the algorithm could be used to predict fall risk in patients with Parkinson’s disease. Claros is also exploring how the injury risk reduction model can be applied to aging research with the Delaware Center for Cognitive Aging. “We want to use brain measurements to investigate whether baseline lifestyle measurements such as weight, BMI, and smoking history are predictive of future mild cognitive impairment or Alzheimer’s disease,” said Claros. To arrange an interview with Buckley, email UD's media relations team at MediaRelations@udel.edu

1 min

University of Delaware's physical therapy program ranked #1 graduate school in the U.S.

The University of Delaware's physical therapy program has been ranked #1 in the 2026 edition of Best Graduate Schools, U.S. News and World Report. The program has revolutionized the use of prosthetics, helped students become trainers for Super Bowl champions and boasts unique specialized training. Darcy Reisman, chair of the program, can talk about the following: Research: One study incorporated walking into daily behavior for stroke patients. Our PT researchers have also revolutionized the use of prosthetics to improve the lives of those who have lost limbs. Professional outcomes: Two of our PT grads were on the Philadelphia Eagles’ training staff during their Super Bowl run. Another is working in Major League Soccer with a Tennessee-based team. Specialized training: UDPT has an accredited Manual Fellowship Program that provides post-professional training for physical therapists in the specialized area of Manual Therapy.Research In total, U.S. news ranked 24 UD graduate programs among the best in the nation. Among those, 13 were in the top 50, including chemical engineering at #8.

View all posts