Multi-sector partnership leads to first practical pilot of vehicle-to-grid power

Electric utility fleet of EVs will begin providing power to balance electric grid

Oct 3, 2024

4 min

Willett Kempton


A multi-pronged effort led by corporations, industry associations and an academic research institution has launched the first practical pilot project of “vehicle-to-grid” power (V2G) set up so that industrial participants can scale it at low cost.


Invented by the University of Delaware, V2G uses batteries in parked EVs to support the electric grid or to provide backup during power failures. This pilot is the first targeted toward large scale expansion, because it follows standards (by SAE and UL), uses production EVs (with UD modifications), complies with utility requirements, and qualifies for wholesale power markets. The pilot has been implemented by Delmarva Power (an Exelon Company), working with UD.


The project has set up an electric utility fleet of EVs to begin providing power to balance the electric grid, using Ford Mach-E EVs in the Delmarva Power fleet, and following new rules of the Federal Energy Regulatory Commission (FERC) for distributed energy resources. These Delmarva Power fleet vehicles are driving for utility operations during normal work schedule and provide wholesale grid services for PJM Interconnection when parked.


The cooperative effort was organized by Prof. Willett Kempton, originator of the V2G concept. Kempton said the resulting demonstration is significant because it shows a cost-effective pathway for standards based, regulatory-compliant, mass-manufactured V2G.


“Our close collaboration with Ford Motor, based on our joint Memorandum of Understanding, was very productive. Ford engineers’ advice helped us fully integrate the car’s CAN communications with LIN-CP,” Kempton said. “Ford already markets a production EV with home backup power, and they have a sophisticated understanding of potential EV synergies with the electric power grid. We hope that collaborations like this will also help OEMs like Ford to see a path to incorporation of these new standards and technologies into production EVs.”


The new standard for V2G signal definitions were finalized and approved just this year thanks to UD Research Professor Rodney McGee, Task Force Chair of the SAE standards development for J3400 (NACS) and J3068. (SAE was formerly called Society of Automotive Engineers.)


“These standards define the signaling to standardize low-cost AC charging, with all the functionality needed for safe operation of V2G and backup power from an EV. Both these standards implement a signaling method that is new to EV charging, called LIN-CP, yet is built from easy-to-implement automotive technologies,” McGee said.


UD’s MOU with Ford Motor Company allowed the two parties to cooperate on implementing sophisticated signaling for low-cost, high-functionality V2G. UD designed a retrofit package for proof of concept. The design was led by UD Postdoc Garrett Ejzak and used a bidirectional on-board charger and the new LIN-CP commands to make the Mach-E capable of sophisticated V2G. After testing at UD, the design was installed in four Delmarva Power fleet Mach-Es, to test these systems in a real-world fleet operating environment.


In addition to proving these new SAE standards, this project also shows that EVs can be high-value grid services providers to the electric system under the new FERC Order 2222 regulations. This new Federal rule enables small resources to collectively participate in electric markets to make the electric grid more reliable and more capable of incorporating fluctuating renewable power sources. PJM Interconnection, which manages the electric grid over 13 states, is participating under a Pilot Project agreement with the Delmarva Power demonstration, as an early proof of PJM’s new rules to meet FERC Order 2222 compliance.


“The use of virtual power plants, such as aggregations of electric vehicles, is an emerging resource type that can contribute to managing the energy transition by providing flexibility and other services needed to reliably operate the power grid,” said Scott Baker, Sr. Business Solution Analyst – Applied Innovation for PJM. “We look forward to working with Delmarva Power and the project team to test the technical capabilities of V2G electric vehicles and understand how this use case integrates with PJM’s new market construct for virtual power plants and DER Aggregators.”


Delmarva Power’s parent company, Exelon Corporation, is also a partner providing support for the project.


Project partner Nuvve Holding Corporation (Nuvve) updated their charging stations for full LIN-CP and V2G capabilities. Then project partner Delmarva Power installed four Nuvve charging stations at their facility in Newark, Delaware. The four individual Mach-Es are virtually combined into one V2G “power plant” by aggregation software from Nuvve Holdings. Nuvve CEO Gregory Poilasne described this:


“Our Nuvve charging stations now talk LIN-CP and implement the new SAE standards. This enables our GIVe aggregator software to tap high functionality V2G EVs,” Poilasne said. “By combining EVs as a single power resource, our technology is already serving as a “Distributed Energy Resource Aggregator” as specified by FERC Order 2222.”


The EVs’ performance and provision of grid services will be monitored over the next year by UD and Nuvve to provide documentation on their use both as fleet vehicles and as grid resources.

Connect with:
Willett Kempton

Willett Kempton

Professor, Marine Science and Policy

Prof. Kempton invented vehicle-to-grid power (V2G); he researches, publishes and lectures on offshore wind power and on electric vehicles.

Vehicle-to-Grid PowerOffshore Wind Policy
Powered by

You might also like...

Check out some other posts from University of Delaware

3 min

Rethinking AI in the classroom: A literacy-first approach to generative technology

As schools nationwide navigate the rapid rise of generative artificial intelligence, educators are searching for guidance that goes beyond fear, hype or quick fixes. Rachel Karchmer-Klein, associate professor of literacy education at the University of Delaware, is helping lead that conversation. Her latest book, Putting AI to Work in Disciplinary Literacy: Shifting Mindsets and Guiding Classroom Instruction, offers research-based strategies for integrating AI into secondary classrooms without sacrificing critical thinking or deep learning. Here is how she is approaching the complex topic.  Q: Your new book focuses on AI in disciplinary literacy. What is the central message? Karchmer-Klein: Rather than positioning AI as a shortcut or replacement for student thinking, the book emphasizes a literacy-first approach that helps students critically evaluate, interrogate, and apply AI-generated information. This is important because schools and universities are grappling with rapid AI adoption, often without clear guidance grounded in learning theory, literacy research, or classroom practice. Q: What inspired this research? Karchmer-Klein: The book grew directly out of my work with preservice teachers, practicing educators, and school leaders who were asking practical but complex questions about AI: How do we use it responsibly? How do we prevent over-reliance? How do we teach students to question what AI produces? I also saw a gap between public conversations about AI which often focused on fear or efficiency and what teachers actually need: research-informed strategies that support deep learning. My long-standing research in digital literacies provided a natural foundation for addressing these questions. Q: What are some of the key findings from your work? Karchmer-Klein: AI is most effective when it is embedded within strong instructional design and disciplinary literacy practices, not treated as a stand-alone tool. The research and classroom examples illustrate that AI can support student learning when it is used to prompt reasoning, reveal misconceptions, provide feedback for revision, and encourage multiple perspectives. Another important development is the emphasis on teaching students to evaluate AI outputs critically by recognizing bias, inaccuracies, and limitations, rather than assuming correctness. Q: How could this work impact schools, teacher education programs and the broader public? Karchmer-Klein: For educators, this work provides concrete, evidence-based literacy strategies coupled with AI in ways that strengthen, not dilute, student thinking. For teacher education programs and school districts, it offers a research-based framework for professional development and policy conversations around AI use. More broadly, the work speaks to a public concern about how emerging technologies are shaping learning, helping to reframe AI as something that requires human judgment, ethical consideration, and strong literacy skills to use well. ABOUT RACHEL KARCHMER-KLEIN Rachel Karchmer-Klein is an associate professor in the School of Education at the University of Delaware where she teaches courses in literacy and educational technology at the undergraduate, graduate, and doctoral levels. She is a former elementary classroom teacher and reading specialist. Her research investigates relationships among literacy skills, digital tools, and teacher preparation, with particular emphasis on technology-infused instructional design. To speak with Karchmer-Klein further about AI in literacy education, critical evaluation of AI-generated content and teacher preparation in the era of generative AI, reach out to MediaRelations@udel.edu.

2 min

How AI can improve poor leadership writing and boost productivity

Poor written communication from leaders can create the kind of confusion it intended to avoid. University of Delaware career expert Jill Gugino Panté suggests using AI to sharpen emails, clarify expectations and reduce unnecessary calls. Getting through to employees with strong messaging can boost productivity by saving time and reducing unwanted meetings, she says. Panté, director of UD's Lerner Career Services Center, says that good leadership writing should be direct and outcome-driven, with no fluff, and offered the following advice for improvement. ✅ Don’t bury the lead. Start with what decision needs to be made, what action is required, and the deadline. If your writing doesn’t reduce ambiguity, it’s going to add to it. Vague communication can create interpretation gaps which, in turn, can create more meetings. When ownership isn’t defined, decisions aren’t documented, or outcomes aren’t clear, teams default to “Let’s hop on a call.” Meetings then become the fallback for unclear thinking. ✅ Generative AI can be a powerful clarity tool if it’s used intentionally. When used well, it can sharpen your ask and structure communication for action. The key is prompting it to refine your message, not just polish it. Leaders can use prompts like: • “Rewrite this message so the action, owner, deadline, and success metrics are explicitly stated" • “What assumptions or ambiguities exist in this message?” ✅ Good writing can replace unnecessary meetings. If communication is not direct, outcome-driven, and structured for action, it will cost you time somewhere else. Here are some practical actions that leaders can make in their writing: • Start with the Ask - Be explicit about what decision or action is needed. Don’t make people search for it. • Define Outcomes - Clarify deliverables, timelines, budgets and state what success looks like. • Clarify Ownership - Identify who is responsible for the request. • Document Decisions - Write down what has been decided and reiterate next steps, owners, and deadlines. To connect with Panté directly and arrange an interview, visit her profile and click on the "contact" button. Interested media can also send an email to MediaRelations@udel.edu.

1 min

Epidemiologist: Winter Olympics fortunate to dodge norovirus outbreak

Finland's Olympic women's hockey team overcame a norovirus scare last week, but they couldn't get past Team USA, who shut them out 5-0 Saturday in Milan. The University of Delaware's Jennifer Horney can discuss the difficult-to-contain virus, which also hit the Winter Games in 2018. - Horney, a professor of epidemiology at UD, said that the outbreak –  which forced Finland to cancel its first game after 13 players had either been infected or quarantined – is not surprising. Norovirus spreads rapidly in crowded environments through direct contact with surfaces or airborne droplets. - It is difficult to limit the spread of norovirus, as witnessed by the major outbreak that spread at the 2018 Winter Olympics in South Korea. - Consideration is often given for the potential of these types of outbreaks being intentional, which requires public health to work closely with law enforcement. To reach Horney directly and arrange an interview, visit her profile and click on the "contact" button. Interested journalists can also send an email to MediaRelations@udel.edu.

View all posts