Villanova Professor at the Forefront of Work to Tackle Quantum Threats

Jiafeng Xie, PhD, associate professor of Electrical and Computer Engineering, is working to strengthen security against threats posed by quantum computers

Oct 17, 2024

5 min

Securing Our Future Against Quantum Threats


Security and privacy are values that everyone cherishes. No tech user wants their personal information getting into the wrong hands, which is why we have security measures in place to protect our private data: face ID to unlock our phones, two-factor authentication to log into banking apps and fingerprint technology to securely enter any system—from a computer to your front door. Encryption codes are used on each of these platforms to encode private data and allow only authorized users to access it. These measures are put in place to protect us, but new advancements in technology could soon challenge these secure systems that we have come to know and trust.


Quantum computers are extraordinary machines capable of solving problems far beyond the scope of today’s standard computers. Although these computers are not commercially available, scientists harness their power for experimentation and data storage. Quantum computers excel in scientific development, but they may also prove to be a threat to existing technology that we use in our daily lives. Experts predict that by 2035, quantum computers could crack the very encryption codes that secure everyday transactions and data.


Jiafeng Xie, PhD, associate professor of Electrical and Computer Engineering at Villanova University, is at the forefront of this battle, using his Security and Cryptography Lab to strengthen security measures against the threat of quantum computers.



The Rise of Post-Quantum Cryptography


Since quantum computer advancements are accelerating at an unprecedented pace, post-quantum cryptography (PQC) has emerged as a critical area of research and development. Scientists who study PQC are working to come up with new algorithms to encode our sensitive data, with a goal of being installed after quantum computers crack our current encryption systems. Without these new algorithms, once quantum computers break our current codes, sensitive data—whether personal, corporate or governmental—could be left vulnerable to malicious actors.


The core problem of our current encryption system lies in the foundation of public-key cryptosystems. Public-key cryptography is a method of encryption where the user logs into a system using their own private “key”, and the back end of the system has a “key” as well. A “key” is a large numerical value that scrambles data so that it appears random. When a user logs in, their “key” can decrypt private information held by the public “key” in the system to ensure a secure login.


This security method is safe right now, but these systems rely on mathematical principles that, while secure against classical computing attacks, are vulnerable to the immense processing power of quantum computers.


At the heart of the vulnerability is Shor's algorithm, developed by MIT computer scientist Peter Shor in 1994. As Dr. Xie explained, “Shor invented an algorithm to solve prime factors of an integer that can supposedly run on a quantum computer. This algorithm, if run on a large-scale mature quantum computer, can easily solve all these existing cryptosystems' mathematical formulation, which is a problem."


The realization of this potential threat has spurred an increased focus on the development of post-quantum cryptography over the past decade. The goal is clear: "We want to have some sort of cryptosystem that is resistant to quantum computer attacks," says Dr. Xie.


In 2016, the National Institute of Standards and Technology (NIST) began the process of standardizing post-quantum cryptography. In July 2022, NIST selected four algorithms to continue on to the standardization process, where they are currently being tested for safety and security against quantum computers. The standardization process for these new algorithms is intensive, and two of the candidates that were announced for testing have already been broken during the process. Scientists are in a race against time to increase the diversity of their algorithms and come up with alternate options for standardization.


The urgency of this shift to post-quantum cryptography is underscored by recent government action. The White House released a national security memo in 2022 stating that the U.S. government must transition to quantum-resistant algorithms by 2035. This directive emphasizes the critical nature of post-quantum cryptography in maintaining not just personal but national security.


Villanova’s Security and Cryptography Lab


Once a new algorithm is selected by NIST, it will need to be embedded into various platforms that need to be secured—this is where Dr. Xie’s Security and Cryptography Lab comes in. This lab is actively conducting research into how the newly selected algorithm can be implemented in the most effective and resourceful way. The lab team is working on developing techniques for this new algorithm so that it can be embedded into many different types of platforms, including credit cards and fingerprint technology.


However, there are significant challenges in this process. As Dr. Xie explains, "Different platforms have different constraints. A chip-based credit card, for example, has limited space for embedding new encryption systems. If the implementation technique is too large, it simply won’t work.”


Another arising issue from this research is security. During the application of this new algorithm, there's a risk of information or security leakage, so Dr. Xie is always on the lookout for developing security issues that could cause problems down the road.



The Future of Post-Quantum Cryptography


The implications of PQC are widespread and extend far beyond academic research. As Dr. Xie points out, "All existing cryptosystems, as long as they have some sort of function—for example, signing in or entering a password for login—all of these systems are vulnerable to quantum attacks."


This vulnerability affects everything from banking systems to small-scale security measures like fingerprint door locks.


The scope of this transition is massive, requiring updates to encrypted systems across all sectors of technology. His goal is to ensure that these new cryptographic systems are flexible enough to be applied to everything from small devices like credit cards and drones to large-scale infrastructure like data centers and military equipment.


Although researchers are hard at work now, the future of post-quantum cryptography is not without uncertainties. Dr. Xie raises an important question: "When quantum computers become available, will the algorithms we develop today be broken?"


While the newly developed algorithms will theoretically be secure, vulnerabilities can emerge when implementing any kind of new security system. These potential vulnerabilities highlight the importance of conducting this research now so that the new algorithms can go through intensive testing prior to being implemented.


Despite these challenges, Dr. Xie emphasizes the importance of being prepared for this new reality. "Society as a whole needs to be prepared with this kind of knowledge,” he says. “A new era is coming. With our current security systems, we need to have revolutionized change. On the other hand, we should not be panicked. We just need continued support to do more related research in this field.”


More extensive research is required to ensure that our privacy is protected as we enter a new era of quantum computing, but labs like the Security and Cryptography Lab at Villanova are a step in the right direction. Although the “years to quantum” clock is ticking down, researchers like Dr. Xie are well on their way to ensuring that our digital infrastructure remains secure in the face of evolving technological threats.

You might also like...

Check out some other posts from Villanova University

5 min

Intellectual Property Law Scholar Waseem Moorad, Esq., Unwraps Crux Arguments of Smucker’s Sandwich Suit

A popular on-the-go sandwich is now the subject of a mega trademark lawsuit between two food industry giants. The J.M. Smucker Company, more commonly known as Smucker’s, recently filed a trademark lawsuit against grocery chain Trader Joe’s over what it alleges is infringement upon its iconic billion-dollar investment: the Uncrustables sandwich. Smucker’s seeks to obtain unspecified monetary damages from Trader Joe’s, as well as profit from its similar product. But beyond the novelty of the sandwich suit lies a complex case built around a lesser-known morsel of trademark law, says Waseem Moorad, Esq., assistant professor of Law at Villanova University Charles Widger School of Law and director of the school’s Intellectual Property Clinic. Professor Moorad, a former U.S. Patent and Trademark Office Patent (USPTO) examiner, recently discussed the actual claims of the lawsuit, and how both parties are preparing for a potential trial. Q. Since this lawsuit was filed, it has been a popular topic of public discourse, much of which has centered on the product—a crustless peanut butter and jelly sandwich—itself. Is that what this is truly about? Professor Moorad: Much of the commentary has been focused on the argument of whether Smucker's is permitted to have a monopoly of peanut butter and jelly sandwiches, or if Trader Joe's can actually infringe upon the Uncrustables product without necessarily using the actual trademarked name. While both discussions are legitimate conversations folks could have while munching on the delicious snack products, they are not necessarily the relevant legal claims at the crux of this lawsuit. Q: Before we get into what those relevant legal claims are, Smucker’s has filed dozens of trademarks in its 128-year history. What sorts of intellectual property do these trademarks generally protect? PM: Most of their trademarks filed with the USPTO are registered to protect against competitors from using words, logos, slogans, symbols and other materials that are linked to the brand name of the company, its affiliates, or its respective products. Well-known examples include Smucker's, Folgers, Jif, and, of course, Uncrustables. If a competing company has a brand or a product that has a similar sounding name or appearance, such as "Giff Peanut Butter," then Smucker's could sue that company for trademark infringement. That name is not only infringing upon a trademark that Smucker's has federal protection over, but also is in the same related industry (food products), within which Smucker's has protection. Q: But Trader Joe’s did not necessarily infringe on any trademarked words, symbols, slogans or the like. What, then, is the basis for the claims of infringement? PM: The issue is related to a deeper subset of trademark law, specifically the concept of "trade dress." Trade dress is the intellectual property associated with the visual and aesthetic characteristics of a product or its related packaging that allows a consumer to know with whom that product or packaging is associated. For example, Coca-Cola's name, which is federally protected, is well known as a registered trademark; however, the Coca-Cola bottle, with the curvy appearance where it gets slimmer in the middle, is an example of a registered trade dress belonging to Coca-Cola. If there was no logo or word mark on the bottle, the average consumer would still be able to recognize it as a Coke bottle. There are several trademarks that Smucker's owns that are related to the trade dress of its products. Smucker's isn’t alleging that Trader Joe's is copying any of the branding names of their products; they are accusing their competitor of mimicking the trade dress or aesthetic appearances, textures, and characteristics of its Uncrustables products and packaging. Q: What specific trade dress trademarks are they claiming have been infringed upon? PM: There are at least two registered trademarks that Smucker's is drawing legal attention to. In 2002, Smucker's had trademarked the image of an Uncrustables sandwich that has pie-crimping indentations or marks along the circumference of the sandwich, and in 2019, the company trademarked the image of an Uncrustables sandwich with a bite taken out of it. Smucker's argument is that the Trader Joe's packaging for a similar crustless peanut butter and jelly shows an image of a sandwich with a bite taken out of it, as well as the crimping along the outer edges. Q: How does one make a legal case out of something like this? PM: In order to effectively file a trademark infringement lawsuit, the plaintiff must not only show that their federally-protected intellectual property rights are being infringed upon, but also demonstrate that as a result of this infringement, the customer or consumer is being confused. Smucker's alleges that as result of Trader Joe's actions, customers are now confused over the product and are purchasing Trader Joe's peanut butter and jelly sandwiches thinking they are actually Smucker's Uncrustables sandwiches. Smucker's is of the belief that if the Trader Joe's packaging did not show pie-like crimped edges and the image of the sandwich with a bite taken out of it, confused consumers would not have purchased the Trader Joe's products and would have instead purchased Smucker's Uncrustables. It is this argument that will be the crux of the court cases to follow. Q: Assuming this goes to trial, how will the two parties prepare and what are some of the challenges for Smucker’s as plaintiff? PM: Part of the case on Smucker's end will be to gather customer feedback or testimony that demonstrates confusion in the marketplace as a result of the similar packaging and trade dress. Trader Joe's will focus on the fact that even though the packaging may be similar, there would be no reason or basis for a customer to be confused between a Trader Joe's-branded product and a Smucker's-branded product. As the plaintiff in this case, the burden shall be on Smucker's to prove the confusion element necessary to have trademark infringement. The Trader Joe’s product clearly says Trader Joe’s, and the chain has a marketplace reputation for selling its own products rather than other-branded products. The challenge in such a scenario will be to prove, despite this, that customers purchasing this product would still have gotten confused and either assumed that they were purchasing Uncrustables, or mistakenly believed that Uncrustables may now have a commercial relationship with Trader Joe's.

4 min

Roderick Cooke, PhD, French and Francophone Studies Professor, Shares Thoughts on Louvre Heist, Artifacts Stolen

On Sunday, October 19, at 9:34 a.m., four masked individuals surged into the Louvre’s Galerie d’Apollon from a severed, second-floor window. Hurriedly, they smashed open two display cases, seized eight pieces of jewelry, then shimmied down a ladder and sped off on motorbikes toward Lyons. In seven minutes’ time, in broad daylight, they absconded with an estimated $102 million in valuables from the world’s most famous museum. This past Saturday, October 25, French authorities announced the first arrests in connection with the daring heist. However, despite the police’s progress, the country continues to litigate the matter—embroiled in discussions of heritage, history and national identity. Recently, Roderick Cooke, PhD, director of French and Francophone Studies at Villanova University, shared his perspective on the situation as well as the artifacts lost. Q: The Louvre heist has been described as “brazen,” “shocking” and a “terrible failure” on security’s part. Is there any sort of precedent for this event in the museum’s history? Dr. Cooke: Nothing on this scale has ever happened to the Louvre since its founding as a museum during the Revolution. The closest equivalent is the 1911 theft of the Mona Lisa by a former employee who claimed it should be returned to Italy. However, that was one painting, the heist was not committed by organized crime, and the Mona Lisa did not have the renown it enjoys today. The impact of the theft was thus lower, although it did cause major outrage and a sweeping law-enforcement response at the time. Ironically, that theft is often credited with making da Vinci’s painting the global icon it continues to be. Q: What has the reaction to this event been among the French people? DC: It’s harder to get a sense of reactions across French society, because so much of the aftermath has focused on the intellectual milieux’s opinions. And in those realms, it has immediately become a political football. Individuals positioning themselves as anti-elite or anti-status quo, such as Jordan Bardella of the National Rally party, have called the theft a “humiliation,” immediately tying it to French national prestige. Former President François Hollande has conversely and vainly called for the event to be de-polemicized, citing national solidarity. This is happening because the Louvre is one of the most visible manifestations of French soft power—the most-visited museum anywhere on Earth. As such, anything attacking its integrity becomes an attack on the nation, and how individual French citizens feel about the theft is closely tied to their broader view of the nation. Q: Several of the items stolen from the Louvre once belonged to Empress Eugénie. Could you share a bit of information on her story? DC: Eugénie de Montijo was a Spanish aristocrat who married the Emperor of the French, who ruled as Napoleon III between 1852 and 1870. It was a time of authoritarian repression and sham democracy—Napoleon III installed the Empire through a coup. Its clearest legacy is that Paris looks the way it does today largely because of the thorough modernizations overseen by Napoleon III’s appointee Baron Haussmann. So, Eugénie and her now-lost jewels represent a complex point in French history, when culture and the economy developed quickly, but did so in a climate of fear for any French person who opposed the regime too loudly (like Victor Hugo, who went into exile on the Channel Islands and wrote poems savaging Napoleon III and his deeds). Some accused the Empress of being responsible for the more hardline and conservative stances taken by her husband’s government. On a different note, she was a diligent patron of the arts and arguably the most significant figure in the contemporary fashion world, famous for setting trends such as the bustle that radiated across Europe. This explains the mix of anger and admiration that followed her depending on the sphere she was operating in. A new English-language biography argues that far from being a traditionalist, she was a pioneering feminist by the standards of the time. It looks like her historical importance will continue to be debated. Q: Interior Minister Laurent Nuñez described the stolen items as “of immeasurable heritage value.” How significant of a cultural loss do you consider this theft? DC: These jewels are referred to in French as “les Joyaux de la Couronne” (the Crown Jewels), but of course that phrase lands very differently in republican France than it does across the water in the United Kingdom. The items actually represent several different dynasties of French rulers, some of whom came to power through direct conflict with others. The now-ransacked display at the Louvre smoothed over these historical divisions, for which many French people died over the centuries. President Macron referred to the stolen items as embodying “our history,” which is emblematic of the French state’s work to create a conceptual present-day unity out of the clashes of the past. At a time when France is arguably more divided than at any point since World War II, any unitary symbol of identity takes on greater significance. Q: Do you have any closing thoughts on the artifacts taken and what they represent? DC: I’d reemphasize the previous point about the smoothing effect of the museum display on the violent history that made it possible. Much of the reporting on the stolen jewels lists off the different queens and empresses who owned them, without giving readers a sense of the complicated succession of regime changes and ideologies that put those women in power in the first place. The relative stability of the last 60-odd years is an anomaly in modern French history. This set of jewels and the names of their original owners may seem far removed from the concerns of an ordinary French citizen today, but just beneath their surface is a legacy of changing governments and tensions between social classes that survives in new forms in 2025.

4 min

Villanova Astrophysicist Joey Neilsen, PhD, Plays Prominent Role in Groundbreaking XRISM Collaboration Study

A global team of researchers using the new X-ray Imaging and Spectroscopy Mission (XRISM) telescope, launched in fall 2023, discovered something unexpected while observing a well-studied neutron star system called GX13+1. Instead of simply capturing a clearer view of its usual, predictable activity, their February 2024 observation revealed a surprisingly slow cosmic wind, the cause of which could offer new insights into the fundamental physics of how matter accumulates, or “accretes,” in certain types of binary systems. The study was one of the first from XRISM looking at wind from an X-ray binary system, and its results were published in Nature—the world's leading multidisciplinary science journal—in September 2025. Spectral analysis indicated GX13+1 was at that very moment undergoing a luminous super-Eddington phase, meaning the neutron star was shining so brightly that the radiation pressure from its surface overcame gravity, leading to a powerful ejection of any infalling material (hence the slow cosmic wind). Further comparison to previous data implied that such phases may be part of a cycle, and could “change the way we think about the behavior of these systems,” according to Joey Neilsen, PhD, associate professor of Physics at Villanova University. Dr. Neilsen played a prominent role as a co-investigator and one of the corresponding authors of the project, along with colleagues at the University of Durham (United Kingdom), Osaka University (Japan), and the University of Teacher Education Fukuoka (Japan). Overall, the collaboration featured researchers from dozens of institutions across the world. GX13+1 is a binary system consisting of a neutron star orbiting a K5 III companion star—a cooler giant star nearing the end of its life. Neutron stars are small, incredibly dense cores of supergiant stars that have undergone supernovae explosions. They are so dense, Dr. Neilsen says, that one teaspoon of its material would weigh about the same as Mount Everest. Because of this, they yield an incredibly strong gravitational field. When these highly compact neutron stars orbit companion stars, they can pull in, or accrete, material from that companion. That inflowing material forms a visible rotating disk of gas and dust called an accretion disk, which is extremely hot and shines brightly in X-rays. It’s so bright that sometimes it can actually drive matter away from the neutron star. “Imagine putting a giant lightbulb in a lake,” Dr. Neilsen said. “If it’s bright enough, it will start to boil that lake and then you would get steam, which flows away like a wind. It’s the same concept; the light can heat up and exert pressure on the accretion disk, launching a wind.” The original purpose of the study was to use XRISM to observe an accretion disk wind, with GX13+1 targeted specifically because its disk is persistently bright, it reliably produces winds, and it has been well studied using Chandra— NASA’s flagship X-ray observatory—and other telescopes for comparison. XRISM can measure the X-ray energies from these systems a factor of 10 more precisely than Chandra, allowing researchers to both demonstrate the capabilities of the new instrument and study the motion of outflowing gas around the neutron star. This can provide new insights into accretion processes. “It's like comparing a blurry image to a much sharper one,” Dr. Neilsen said. “The atomic physics hasn't changed, but you can see it much more clearly.” The researchers uncovered an exciting surprise when the higher-resolution spectrum showed much deeper absorption lines than expected. They determined that the wind was nearly opaque to X-rays and slow at “only” 1.4 million miles per hour—surprisingly leisurely for such a bright source. Based on the data, the team was able to infer that GX13+1 must have been even brighter than usual and undergoing a super-Eddington phase. So much material was ejected that it made GX13+1 appear fainter to the instrument. “There's a theoretical maximum luminosity that you can get out of an accreting object, called the Eddington limit. At that point, the radiation pressure from the light of the infalling gas is so large that it can actually hold the matter away,” Dr. Neilsen said, equating it to standing at the bottom of a waterfall and shining light so brightly that the waterfall stops. “What we saw was that GX13+1 had to have been near, or maybe even above, the Eddington limit.” The team compared their XRISM data from this super-Eddington phase to a set of previous observations without the resolution to measure the absorption lines directly. They found several older observations with faint, unusually shaped X-ray spectra similar to the one seen by XRISM. “XRISM explained these periods with funny-shaped spectra as not just anomalies, but the result of this phenomenally strong accretion disk wind in all its glory,” Dr. Neilsen said. “If we hadn’t caught this exact period with XRISM, we would never have understood those earlier data.” The connection suggests that this system spends roughly 10 percent of its time in a super-Eddington phase, which means super-Eddington accretion may be more common than previously understood—perhaps even following cycles—in neutron star or black hole binary systems. “Temporary super-Eddington phases might actually be a thing that accreting systems do, not just something unique to this system,” Dr. Neilsen said. “And if neutron stars and black holes are doing it, what about supermassive black holes? Perhaps this could pave the way for a deeper understanding of all these systems.”

View all posts