Researchers race to detect Alzheimer's sooner using $3.9M grant

Nov 15, 2024

3 min

Chris Martens


Too often, people learn they have Alzheimer’s disease when it’s too late. The changes in the brain that lead to the disease manifesting with symptoms have already been occurring for decades.


Researchers at the University of Delaware will attempt to detect the disease sooner through a new study that examines changes in the arteries and brain tissue in midlife adults in their 50s and 60s. The findings of this work, funded by a nearly $4 million grant from the National Institute on Aging (NIA), could identify the earliest mechanisms linking vascular aging to the loss of brain tissue integrity, leading to new targets for interventions aimed at preventing age-related cognitive impairment.


“People who develop high blood pressure or stiffening of the aorta and carotid arteries in midlife are at a much higher risk for developing cognitive impairment or dementia in late life,” said Christopher Martens, the principal investigator of the study.


Martens, an associate professor of kinesiology and applied physiology in UD's College of Health Sciences and director of the Delaware Center for Cognitive Aging (DECCAR), is working closely with Curtis Johnson, an associate professor of biomedical engineering in the College of Engineering and leader of the neuroimaging biomarker core within DECCAR, on research funded by a nearly $4 million grant from the National Institute on Aging (NIA), a division of the National Institutes of Health (NIH).


“A lot happens as we age, so we’re aiming to pinpoint the timing and exact mechanisms that cause these changes in midlife adults,” Martens said.


This latest grant extends DECCAR’s ongoing Delaware Longitudinal Study for Alzheimer’s Prevention (DeLSAP), which seeks to study how risk and protective factors for dementia are related and change over time. Those eligible for DeLSAP could also meet the criteria for participating in the new study.


In his Neurovascular Aging Laboratory, Martens studies mechanisms leading to the stiffening of arteries, while Johnson is specifically interested in measuring the stiffness of the brain.


“As a person ages, the brain gets softer and breaks down, and we’re looking to see whether changes in arterial stiffness and patterns of blood flow in the brain cause this decline,” Johnson said.


Changes in blood flow to the brain come from controllable factors. Smoking, cardiovascular health, diet and exercise all impact blood flow positively and negatively.


“A lot of aging research is done at the end of life,” Johnson said. “We want to look at midlife and try to predict what happens later in life so we can prevent it.”


While the brain gets softer with age, arteries get stiffer.


“We hypothesize that midlife increases in stiffness in blood vessels cause damaging pulsatile pressure to enter the brain,” Martens said. “We believe this is one of the reasons we start to develop cognitive issues at an older age because the brain is exposed to increased pressure; that pressure is likely inflicting damage on surrounding brain tissue.”


In Johnson’s Mechanical Neuroimaging Lab, researchers will use high-resolution magnetic resonance elastography (MRE) to determine where brain damage occurs and what specific brain structures may be affected.


“From an MRI perspective, most researchers look at AD and other neurodegenerative diseases like multiple sclerosis with an emphasis on detection in a hospital setting,” Johnson said. “Using highly specialized techniques we’ve developed, we focus on the earlier side and how these changes progress into disease from the neuroscience side, emphasizing prevention.”


Together, they’ll seek to learn whether arterial stiffness causes the kind of cognitive impairment seen in AD or whether the decline is associated with a loss in the integrity of brain tissue.


“If we can prove arterial stiffness is playing a causal role in cognitive aging, that would provide further support for focusing on blood vessel health as an intervention for delaying AD or other forms of dementia versus solely focusing on the brain,” Martens said.

Connect with:
Chris Martens

Chris Martens

Associate Professor, Kinesiology & Applied Physiology

Prof. Martens's laboratory is interested in understanding mechanisms by which impaired vascular function contributes to cognitive declines.

Alzheimer's DiseaseAgingClinical TrialsCerebral Blood FlowVascular Aging

You might also like...

Check out some other posts from University of Delaware

1 min

Can AI save our oyster reefs? A team of scientists put it to the test

With global oyster populations having declined by more than 85% from historical levels, restoring and monitoring these critical ecosystems is more urgent than ever. But traditional monitoring methods aren’t cutting it. A team of researchers that included the University of Delaware's Art Trembanis have taken a new approach, testing an AI model designed to recognize live oysters from underwater images. The findings? The AI model, called ODYSSEE, was faster than human experts and non-expert annotators, processing in just 40 seconds what took humans up to 4.5 hours. But it wasn’t yet as accurate. In fact, the tool misidentified more live oysters than both groups of human annotators. Still, the team found that ODYSEE has real potential to monitor reefs in real time. Why does this matter? As climate change, pollution and overharvesting continue to pressure coastal environments, more precise and non-invasive monitoring tools like ODYSSEE could become essential to restoration efforts and environmental policy. Trembanis can discuss this new tool and its ability to identify live oysters without disturbing the reef. His expertise in oceanography, engineering and robotics expertise was key to the team's work. The results, published in the journal Frontiers, offer both caution and hope in the race to improve ocean monitoring with emerging technologies. To set up an interview with Trembanis, visit his profile and click on the contact button.

1 min

Will AI undermine or support writing and critical thinking?

As artificial intelligence reshapes the way we write and think, a central question emerges: Is AI helping or hindering our ability to engage in independent, critical thought? Joshua Wilson, professor of education at the University of Delaware, investigates this topic in a new paper that examines the risks of AI dependency and discusses the need for AI literacy in education. Wilson explores how AI impacts cognitive development through writing — highlighting both the promise and peril of AI-powered tools like ChatGPT. His expertise centers on how these tools interact with foundational models of writing and learning and what that means for education, workforce readiness and civic engagement. In his new paper, Wilson warns that while AI can support higher-order thinking by automating basic writing mechanics, it also risks eroding critical thinking if students and professionals come to rely on it uncritically. He is a leading advocate for AI literacy in education – training individuals not just to use AI, but to think with it. Wilson is available for interviews with reporters, particularly those covering the intersection of AI, education and society and investigating the risks of cognitive offloading in an AI-saturated world. To reach Wilson directly, visit his profile and click on the contact button.

1 min

Fast-striking and unpredictable, tornadoes pose major challenges for emergency planners

At least 20 U.S. states have been hit with tornadoes – some of them deadly – over the past week. Experts from the University of Delaware's Disaster Research Center can speak to the difficulty of drawing up plans in advance of tornadoes, which can develop quickly and unexpectedly, as well as a variety of topics related to storm preparedness, evacuations and recovery. Those experts include: Jennifer Horney: Environmental impacts of disasters and potential public health impacts for chronic and infectious diseases. Horney, who co-authored a paper on the increase in tornado outbreaks, can talk about how impacts on the morbidity and mortality that result from tornadoes. Tricia Wachtendorf: Evacuation decision-making, disaster response and coordination, disaster relief (donations) and logistics, volunteer and emergent efforts, social vulnerability. James Kendra: Disaster response, nursing homes and hospitals, volunteers, response coordination. Jennifer Trivedi: Challenges for people with disabilities during disaster, cultural issues and long-term recovery. Sarah DeYoung: Pets in emergencies, infant feeding in disasters and decision-making in evacuation. A.R. Siders: Expert on sea level rise and managed retreat – the concept of planned community movement away from flood-prone areas. To reach these experts directly, visit their profile and click on the contact button.

+1
View all posts