Researchers race to detect Alzheimer's sooner using $3.9M grant

Nov 15, 2024

3 min

Chris Martens


Too often, people learn they have Alzheimer’s disease when it’s too late. The changes in the brain that lead to the disease manifesting with symptoms have already been occurring for decades.


Researchers at the University of Delaware will attempt to detect the disease sooner through a new study that examines changes in the arteries and brain tissue in midlife adults in their 50s and 60s. The findings of this work, funded by a nearly $4 million grant from the National Institute on Aging (NIA), could identify the earliest mechanisms linking vascular aging to the loss of brain tissue integrity, leading to new targets for interventions aimed at preventing age-related cognitive impairment.


“People who develop high blood pressure or stiffening of the aorta and carotid arteries in midlife are at a much higher risk for developing cognitive impairment or dementia in late life,” said Christopher Martens, the principal investigator of the study.


Martens, an associate professor of kinesiology and applied physiology in UD's College of Health Sciences and director of the Delaware Center for Cognitive Aging (DECCAR), is working closely with Curtis Johnson, an associate professor of biomedical engineering in the College of Engineering and leader of the neuroimaging biomarker core within DECCAR, on research funded by a nearly $4 million grant from the National Institute on Aging (NIA), a division of the National Institutes of Health (NIH).


“A lot happens as we age, so we’re aiming to pinpoint the timing and exact mechanisms that cause these changes in midlife adults,” Martens said.


This latest grant extends DECCAR’s ongoing Delaware Longitudinal Study for Alzheimer’s Prevention (DeLSAP), which seeks to study how risk and protective factors for dementia are related and change over time. Those eligible for DeLSAP could also meet the criteria for participating in the new study.


In his Neurovascular Aging Laboratory, Martens studies mechanisms leading to the stiffening of arteries, while Johnson is specifically interested in measuring the stiffness of the brain.


“As a person ages, the brain gets softer and breaks down, and we’re looking to see whether changes in arterial stiffness and patterns of blood flow in the brain cause this decline,” Johnson said.


Changes in blood flow to the brain come from controllable factors. Smoking, cardiovascular health, diet and exercise all impact blood flow positively and negatively.


“A lot of aging research is done at the end of life,” Johnson said. “We want to look at midlife and try to predict what happens later in life so we can prevent it.”


While the brain gets softer with age, arteries get stiffer.


“We hypothesize that midlife increases in stiffness in blood vessels cause damaging pulsatile pressure to enter the brain,” Martens said. “We believe this is one of the reasons we start to develop cognitive issues at an older age because the brain is exposed to increased pressure; that pressure is likely inflicting damage on surrounding brain tissue.”


In Johnson’s Mechanical Neuroimaging Lab, researchers will use high-resolution magnetic resonance elastography (MRE) to determine where brain damage occurs and what specific brain structures may be affected.


“From an MRI perspective, most researchers look at AD and other neurodegenerative diseases like multiple sclerosis with an emphasis on detection in a hospital setting,” Johnson said. “Using highly specialized techniques we’ve developed, we focus on the earlier side and how these changes progress into disease from the neuroscience side, emphasizing prevention.”


Together, they’ll seek to learn whether arterial stiffness causes the kind of cognitive impairment seen in AD or whether the decline is associated with a loss in the integrity of brain tissue.


“If we can prove arterial stiffness is playing a causal role in cognitive aging, that would provide further support for focusing on blood vessel health as an intervention for delaying AD or other forms of dementia versus solely focusing on the brain,” Martens said.

Connect with:
Chris Martens

Chris Martens

Associate Professor, Kinesiology & Applied Physiology

Prof. Martens's laboratory is interested in understanding mechanisms by which impaired vascular function contributes to cognitive declines.

Alzheimer's DiseaseAgingClinical TrialsCerebral Blood FlowVascular Aging

You might also like...

Check out some other posts from University of Delaware

1 min

Will AI undermine or support writing and critical thinking?

As artificial intelligence reshapes the way we write and think, a central question emerges: Is AI helping or hindering our ability to engage in independent, critical thought? Joshua Wilson, professor of education at the University of Delaware, investigates this topic in a new paper that examines the risks of AI dependency and discusses the need for AI literacy in education. Wilson explores how AI impacts cognitive development through writing — highlighting both the promise and peril of AI-powered tools like ChatGPT. His expertise centers on how these tools interact with foundational models of writing and learning and what that means for education, workforce readiness and civic engagement. In his new paper, Wilson warns that while AI can support higher-order thinking by automating basic writing mechanics, it also risks eroding critical thinking if students and professionals come to rely on it uncritically. He is a leading advocate for AI literacy in education – training individuals not just to use AI, but to think with it. Wilson is available for interviews with reporters, particularly those covering the intersection of AI, education and society and investigating the risks of cognitive offloading in an AI-saturated world. To reach Wilson directly, visit his profile and click on the contact button.

1 min

Fast-striking and unpredictable, tornadoes pose major challenges for emergency planners

At least 20 U.S. states have been hit with tornadoes – some of them deadly – over the past week. Experts from the University of Delaware's Disaster Research Center can speak to the difficulty of drawing up plans in advance of tornadoes, which can develop quickly and unexpectedly, as well as a variety of topics related to storm preparedness, evacuations and recovery. Those experts include: Jennifer Horney: Environmental impacts of disasters and potential public health impacts for chronic and infectious diseases. Horney, who co-authored a paper on the increase in tornado outbreaks, can talk about how impacts on the morbidity and mortality that result from tornadoes. Tricia Wachtendorf: Evacuation decision-making, disaster response and coordination, disaster relief (donations) and logistics, volunteer and emergent efforts, social vulnerability. James Kendra: Disaster response, nursing homes and hospitals, volunteers, response coordination. Jennifer Trivedi: Challenges for people with disabilities during disaster, cultural issues and long-term recovery. Sarah DeYoung: Pets in emergencies, infant feeding in disasters and decision-making in evacuation. A.R. Siders: Expert on sea level rise and managed retreat – the concept of planned community movement away from flood-prone areas. To reach these experts directly, visit their profile and click on the contact button.

+1

3 min

UD researchers launch open-source tool to boost global food security and water sustainability

Efficient water usage in agriculture is crucial for sustaining a growing human population. A better understanding of the systems that support agriculture, farmers and farmlands allows for food production to become more efficient and prosperous. That's what makes the Monthly Irrigated and Rainfed Cropped Areas Open Source (MIRCA-OS) dataset so important. MIRCA-OS offers high-resolution data on 23 crop classes — including maize, rice and wheat — and helps researchers, students and farmers examine irrigation, rainfall and croplands and how they interact with global water systems. Co-authored by Endalkachew (Endi) Kebede, a doctoral student in University of Delaware’s Department of Geography and Spatial Sciences, a recent paper focused on MIRCA-OS was published in Nature Scientific Data. Kyle Davis, assistant professor in the Department of Geography and Spatial Sciences and the Department of Plant and Soil Sciences, served as a co-author on the paper and coordinated the study. “We first developed a comprehensive data library of crop-specific irrigated and rainfed harvested areas for all countries,” Kebede said. “This involved two years of gathering data from a wide range of international, national and regional sources. Through this process, we produced a tabulated crop calendar, annual harvested area grids and monthly harvested area grids for all irrigated and rainfed crops.” “The amount of effort that Endi put in to gather, process and harmonize all of this data is truly incredible,” Davis said. “His effort is a very important contribution to the scientific and development communities.” Doctoral student Endalkachew Kebede (left) and Assistant Professor Kyle Davis. (Photo credit: University of Delaware) Cropland accounts for 13% of Earth's total habitable land, and the preservation of cropland is important in feeding the growing global population. “Crop production has been a widespread human activity for a few thousand years, and it has a huge role in global food security,” Kebede said. “But it also has unintended impacts on the environment, such as overutilization of water resources, pollution through rivers or the effects on soil and the environment.” MIRCA-OS can play a crucial role in helping to better understand croplands and agriculture, allowing the global population to be successfully fed while minimizing the agricultural effects on the environment. In addition to the data included on cropland and water resources, MIRCA-OS allows researchers to view social aspects like poverty and unemployment through an agricultural lens, creating a better understanding of the interconnectivity of agriculture and social issues. MIRCA-OS is an updated version of the earlier MIRCA2000 dataset. Kebede said the MIRCA2000 was released nearly two decades ago, so renewing the data gives users more accurate and timely information. Both datasets specialized in examining irrigation and rainfall, but the MIRCA-OS added two new complexities to their data. First, MIRCA-OS is open source, meaning it is publicly available for anyone to use, download, or modify. Kebede said the added accessibility allows the technology to contribute to anyone's work, whether it be a student, a researcher or a farmer. “Anybody can use, update it, or upscale it to the special skill they’re interested in,” Kebede said. “Some might use it for research, some might use it to create policies and some might use it to practice agriculture.” To arrange an interview with Davis, visit his profile and click on the contact button.

View all posts