Manasvi Lingam Bridges Gap Between Introductory and Graduate Astrobiology Education with New Textbook

Covers Topics from Big Bang Theory to Habitability to Future of Humankind

Jan 21, 2025

4 min

Manasvi Lingam, Ph.D.



Astrobiologist Manasvi Lingam, assistant professor of aerospace, physics and space sciences at Florida Tech, authored a new astrobiology textbook to serve as a resource for the rapidly growing multidisciplinary field.


“From Stars to Life: A Quantitative Approach to Astrobiology,” published by Cambridge University Press, is primarily geared toward upper-level undergraduate and graduate students studying astrobiology, Lingam says. Co-authored by astrophysicist Amedeo Balbi (University of Rome), the book’s 15 chapters cover topics from the Big Bang theory to planetary habitability to the future of humankind. The book also includes practice problems that involve modern developments like GenerativeAI (e.g., ChatGPT).


Lingam explained how he came up with the new textbook and why it can help shape astrobiology programs like Florida Tech’s.


What inspired this textbook?



Manasvi Lingam: [Florida Tech] was the first university in the whole world to start an undergraduate astrobiology major. We have a strong connection to the field. But it turns out, every time I teach the subject, I don’t have a textbook to use. I have my first book, which is “Life in the Cosmos,” but it’s 1,100 pages. It’s for graduate students. It’s not going to work for them. Every time I was trying to cobble together resources from different places. My co-author has the same problem except that he’s been teaching [astrobiology] for even longer, for 20 years. He doesn’t have a textbook either.


There’s this old saying in English: if you want something done right, do it yourself. We decided, well, might as well just try to write it ourselves. That’s how it came to be.




How does this textbook bridge the gap between introductory readings and graduate-level material?


ML: Right now, there’s pretty much only one class of textbooks for astrobiology, and those are written for freshman- or sophomore-level undergraduates. There’s this emphasis on a broad overview but at an extremely qualitative level and sometimes offering somewhat weak explanations for various specific phenomena, such as, “Why did Mars lose its atmosphere? It just got eroded over time.” These kinds of limitations.


Graduate literature is very specialized, oriented towards whatever subfield one is studying in astrobiology. You can have a whole book on the origin of life. You can have a whole book on just Mars. You can have a whole book on Titan and so on. The aforementioned introductory textbooks that exist are very broad, but they don’t really offer a tool to actually get started doing research in the more specialized field. There was this vital need to bridge the gap. That’s what this book is meant to do.


How did you decide what content to include and what not to include?


ML: This field begins almost with the Big Bang – the start of the universe – which is when the first elements were formed, including elements that are widespread in life like hydrogen. This tale begins almost with the beginning of the universe. It is a tale that is still ongoing and is going to unfold for trillions of years into the future.


But, there was so much material to include in principle. We had to be quite selective about what topics to include. There are a number of courses that are taught around the world on this topic. We looked at dozens of them to find the common core within all of them, and then expanded on that core. That’s what constitutes our table of contents.


While writing the textbook, how did you grow as a researcher and an educator?


ML: There’s this implicit understanding in academia that if you can write something down clearly, and if you can articulate something clearly, that’s when you can really say you understand it. Often you can’t articulate what you need to say coherently and succinctly if it’s something very big. That’s what, of course, astrobiology is.


In the process of writing the book as an educator, I think I was really able to see how various domains linked to each other. For instance, modulations of, say, the Earth’s climate that were driven not just by changes on Earth (including life itself!), but also by changes in the sun, by changes in the orbits of other solar system planets, but also phenomena that were taking place hundreds of light years away in the galaxy. You really see that everything is connected – there are hidden links to each other. I think that helped me discover the magic of the universe, so to speak, even more.


From a research standpoint, there were some areas that I have not worked in a lot, but by writing this book, I’ve gotten a better understanding of those areas, like, say, Mars, and also certain microbiological and astrophysical aspects as well. I think that has provided new ideas that I hope to explore in the future.


What do you want readers to learn throughout the book, and what should they walk away with?


ML: What we want to do is build a holistic integrated understanding of different phenomena pertaining to life in the universe, but at a quantitative level, and still retain breadth without sacrificing depth in the process. It won’t necessarily make students ready for research because it’s still primarily an undergrad textbook, but it will give them a comprehensive understanding of how various processes are intertwined with each other. We want people to see the big picture without missing out on the detail, and to appreciate the beauty of life, Earth, the solar system, the Milky Way and the universe.


Lingam plans to start teaching from this textbook in Spring 2025. The textbook is available for purchase on Amazon.


Looking to know more about Astrobiology and the work Manasvi Lingam is doing at Florida Tech?


Then let us help.


Astrobiologist Manasvi Lingam, assistant professor of aerospace, physics and space sciences at Florida Tech and author is available to speak with media regarding this and related topics. Simply click on his icon now to arrange an interview.



Connect with:
Manasvi Lingam, Ph.D.

Manasvi Lingam, Ph.D.

Assistant Professor | Aerospace, Physics and Space Sciences

Dr. Lingam's research interests are primarily within the transdisciplinary areas of astrobiology.

Planetary SciencePlasma PhysicsAstrobiologyAstrophysics

You might also like...

Check out some other posts from Florida Tech

2 min

Covering the Tragic Crash in Washington - Our Experts Can Help

The shocking news of an in-air collision in Washington has garnered massive attention from media, airline authorities and industry experts. Reporters covering the story - rely on experts.  And that's where's Florida Tech's Shem Malmquist was called to lend his expert perspective, insight and opinion on a story that's making international news. "It just shows that traffic is in our location, there's a potential collision hazard," said Shem Malmquist, a pilot and visiting instructor of general aviation and transport aircraft at the Florida Institute of Technology. And in certain situations, it will provide guidance for the pilots on how to avoid a collision, he said. For example, if TCAS believes the pilot needs to pay attention to other air traffic in the area, it may say "traffic traffic," Malmquist said. January 30 - CBC News Shem Malmquist, who is a pilot and instructor at the Florida Institute of Technology, said midair collisions are extremely rare. Malmquist said if they happen they normally happen at smaller airports without air traffic control towers like the Lantana Airport. "The only method of separating traffic is visually, as well as airplanes communicating their positions to other airplanes, and that's going to create more risk," Malmquist said. January 30 - WPTV/NBC News American Airlines Flight 5342 and a military helicopter collided mid-air late Wednesday night near Ronald Reagan Washington National Airport. Officials believe all 64 people aboard the airplane -- 60 passengers, 4 crew members -- and the three people aboard the helicopter are dead. Officials conducted a frantic rescue effort overnight, which transitioned to a recovery effort early Thursday. Many aboard the plane were in Wichita, Kansas for a figure skating competition. Captain Shem Malmquist, an aviation expert at Florida Institute of Technology, joins FOX 35 to talk more about what happened. January 30- Fox News Orlando Looking to connect with Shem Malmquist regarding this ongoing story? He's available, simply click on his icon now to arrange an interview today.

2 min

Lingam, Mirsayar, van Woesik Recognized as ‘Top Scholars’ by ScholarGPS

Florida Tech faculty members Manasvi Lingam, Mirmilad Mirsayar and Robert van Woesik were named “Top Scholars” by ScholarGPS for their contributions to academia over the last five years. Lingam, who studies astrobiology in the Department of Aerospace, Physics and Space Sciences, was ranked No. 9,562 in the world across all disciplines and nearly 15 million ranked scholars, placing him in the top 0.06% of the platform’s scholars globally. He faired strongly in other areas, including: No. 1,919 (0.1%) among 1.9 million scholars in physical sciences and mathematics No. 491 (0.09%) among 545,000 scholars in physics No. 42 (0.31%) among 13,590 scholars in the specialty area planets ScholarGPS cited Lingam’s strong publication record, the impact of his work and the notable quality of his scholarly contributions. He’s published 50 times since 2020, exploring the possible origins, evolution and future of life in the universe. Mirsayar, who studies aerospace engineering, was ranked No. 35,155 across all disciplines and nearly 15 million ranked scholars, placing him in the top 0.24% of scholars globally. He’s published 11 times between 2020-2023, covering topics such as fracture mechanics and solid mechanics. Other highlights include: No. 6 (0.06%) among 8,601 scholars in fracture mechanics No. 49 (1.7%) among 2,879 scholars in solid mechanics No. 315 (1.8%) among 16,847 scholars in reinforced concrete Van Woesik, who studies coral reef ecology, was ranked No. 58,081 across disciplines, putting him in the top 0.39% of nearly 15 million scholars globally. He’s had 22 publications since 2020, covering topics such as coral bleaching, thermal stress and climate change. Van Woesik, who studies coral reef ecology, was ranked No. 58,081 across disciplines, putting him in the top 0.39% of nearly 15 million scholars globally. He’s had 22 publications since 2020, covering topics such as coral bleaching, thermal stress and climate change. Other highlights include: No. 5,282 (0.32%) among 1.7 million scholars in life sciences No. 336 (0.38%) among 88,930 scholars of ecology and evolutionary biology No. 191 (0.95%) among 19,998 scholars of global change. ScholarGPS uses artificial intelligence and data mining technologies to rank individuals, academic institutions and programs. Scholars are ranked by their number of publications, their citations, their h-index and their ScholarGPS® Ranks, which includes all three metrics. If you're interested in connecting with Manasvi Lingam, Robert van Woesik and Mirmilad Mirsayar- simply contact Adam Lowenstein, Director of Media Communications at Florida Institute of Technology at adam@fit.edu to arrange an interview today.

3 min

Florida Tech’s Pallav Ray Seeks to Improve Accuracy of Rainfall Predictions During Monsoon Season

Growing up in Kolkata, India, Pallav Ray recalls hot spring days leading up to summer’s monsoon season. Temperatures sat above 35 degrees Celsius (95 degrees Fahrenheit), rarely falling below that. When it rained, however, that’s when he could find relief – often by walking barefoot on the cool ground. Now an associate professor of ocean engineering and marine sciences at Florida Tech, Ray studies tropical climate dynamics and their variability using observations, models and theory. His paper, “Rain‐Induced Surface Sensible Heat Flux Reduces Monsoonal Rainfall Over India,” was published in Geophysical Research Letters and highlights research he said was inspired by his childhood in India’s hot climate. His research, funded by the National Oceanic and Atmospheric Administration (NOAA), found that including a variable that is often neglected by climate models could improve the accuracy of rainfall predictions. In turn, that could help agriculture industries better prepare for regional irrigation and flooding during monsoon season. Ray’s climate modeling research spans across the globe, from India, to Chicago, Ill., and most recently the Indo-Pacific Maritime Continent archipelago, which includes countries such as Indonesia and New Guinea. The variable, notated as “Qp,” represents precipitation-induced sensible heat flux, which is a component of surface energy that influences precipitation. It essentially accounts for how precipitation cools land surface temperatures. Qp is calculated using a formula accounting for the specific heat of rainwater, density of rainwater, the rate of rain, surface temperature and the temperature of raindrops when they hit the surface. This variable is important, Ray explained, because the temperature of raindrops is typically cooler than the temperature of the surface, so when it rains, the surface cools down. During monsoon season, land is warm and the ocean is cooler, which pushes moist air from the ocean to the land. The higher the temperature difference between the land and the ocean, the stronger the monsoon because it brings more moisture, Ray explained. In testing Qp, Ray and his team of researchers ran simulations investigating the variable’s role on precipitation. They found that when incorporating it, not only is anticipated precipitation reduced by up to 5% – which he says is a significant reduction – but the models also reflect changes in the spatial distribution of precipitation. “The moment we include that term, it cools down the surface, land surface. The temperature difference is smaller between the land and the ocean,” Ray said. “That reduces the overall precipitation overland because now less moisture is coming from the ocean.” In India, Ray explained, most models, overestimate precipitation. His results generated predictions that were much closer to observed rainfall. He says that inclusion of this variable in common climate models could influence India’s regional agriculture and irrigation strategies. According to Ray, rainfall is closely tied to the India’s industries, especially agriculture. He said the variable may have the greatest impact on seasonal rainfall predictions, which happen months in advance and determine how the country approaches its agricultural practices. Policymakers rely on seasonal rainfall predictions to anticipate and plan for summer monsoons, and the money allocated to deal with excess rainfall is “tremendous,” he said. “If you can do a seasonal prediction a few months in advance and your precipitation actually changed by 5%, it’ll change whether you’ll have an excess year versus you’ll have a deficit year,” Ray said. “I think that’s where the main, major impact is.” In his future research, Ray would like to explore how Qp would impact climate models over urban areas here in Florida. If you're interested in learning more about predicting monsoons and the other fascinating research  Pallav Ray is doing at Florida Tech   - simply contact  Adam Lowenstein, Director of Media Communications at Florida Institute of Technology at adam@fit.edu to arrange an interview today.

View all posts