How old is your brain?

University of Delaware researchers find brain stiffness measurements are reliable predictors

Mar 31, 2025

2 min


University of Delaware researchers have found that measuring brain stiffness is a reliable way to predict brain age. This information could be used to identify structural differences that indicate departure from the normal aging process, potentially identifying and addressing disorders such as Alzheimer’s disease and Parkinson’s disease.


In recent findings, Curtis Johnson, associate professor of biomedical engineering, and Austin Brockmeier, assistant professor of electrical and computer engineering, show that measuring both brain stiffness and brain volume produces the most accurate predictions of chronological age. Their findings were published in a recent edition of the journal Biology Methods and Protocols. The pair worked with three current and former UD students to reach their conclusions.


“Brain volume is a common measure that we use to study the brain,” Johnson said. “But something has to be happening to cause a brain to shrink. Something is happening at the microscale that causes it to shrink — changes in the tissue that also cause stiffness to change. And that precedes whatever happens when the volume changes.”


“The stiffness maps all seem kind of random — until we see a large number of images and the randomness fades away and we start to see common patterns in stiffness,” Johnson said. “We sort of knew there was more [information] in there than what we were extracting."


A cutting-edge magnetic resonance imaging (MRI) scanner at UD’s Center for Biomedical and Brain Imaging handled the brain scanning. On the artificial intelligence side, the brain maps were analyzed by three-dimensional “convolutional neural networks,” which — as the name suggests — are convoluted and complicated, incorporating many layers and dimensions.


To arrange and interview with Johnson or Brockmeier, send an email to mediarelations@udel.edu



You might also like...

Check out some other posts from University of Delaware

2 min

Kyle Davis wins NSF CAREER Award for pioneering research on climate-resilient food systems

University of Delaware assistant professor Kyle Davis has received a National Science Foundation (NSF) CAREER Award—one of the most competitive and prestigious honors for early-career faculty—for his work advancing the climate resilience of global food systems. Davis, who holds joint appointments in the College of Earth, Ocean and Environment and the College of Agriculture and Natural Resources, leads cutting-edge research at the intersection of agriculture, sustainability and global environmental change. His focus? Making food production more efficient, climate-smart and socially equitable—especially in regions grappling with limited water resources. With a growing global population and increasing pressure on land and water, Davis’s research is helping to answer one of the most critical questions of our time: How can we feed the world without destroying the planet? His lab’s work recently led to the development of MIRCA-OS, a groundbreaking open-source dataset that offers high-resolution global data on irrigated and rain-fed croplands across 23 crop types. The tool, co-created with UD doctoral student Endalkachew Kebede and published in Nature Scientific Data, allows researchers, farmers and policymakers to assess how crop choices, rainfall and irrigation interact with water systems and food security. Some of the thirstiest crops are grown in the most water-stressed areas Davis said. Shifting crop mixes to crops that require less water but still ensure farmer profits is a promising way to reduce the amount of water needed to irrigate crops and to avoid conditions of water scarcity. Davis’s research spans continents, with active projects in the United States, India, China and Nigeria, where his team is exploring solutions to water scarcity, crop nutrition and agricultural sustainability. His work has appeared in Earth.com, Phys.org and major scientific journals. In 2023, he was recognized with the American Geophysical Union’s Global Environmental Change Early Career Award. In addition to research, Davis is a dedicated mentor, guiding graduate students from around the world. “So much of my research is the result of their passion, abilities, drive and creativity,” Davis said. Davis is available for interviews on topics including sustainable agriculture, water use, climate adaptation, food systems and the power of data science in global development. He can be contacted by clicking the "View Profile" button.

1 min

Can AI save our oyster reefs? A team of scientists put it to the test

With global oyster populations having declined by more than 85% from historical levels, restoring and monitoring these critical ecosystems is more urgent than ever. But traditional monitoring methods aren’t cutting it. A team of researchers that included the University of Delaware's Art Trembanis have taken a new approach, testing an AI model designed to recognize live oysters from underwater images. The findings? The AI model, called ODYSSEE, was faster than human experts and non-expert annotators, processing in just 40 seconds what took humans up to 4.5 hours. But it wasn’t yet as accurate. In fact, the tool misidentified more live oysters than both groups of human annotators. Still, the team found that ODYSEE has real potential to monitor reefs in real time. Why does this matter? As climate change, pollution and overharvesting continue to pressure coastal environments, more precise and non-invasive monitoring tools like ODYSSEE could become essential to restoration efforts and environmental policy. Trembanis can discuss this new tool and its ability to identify live oysters without disturbing the reef. His expertise in oceanography, engineering and robotics expertise was key to the team's work. The results, published in the journal Frontiers, offer both caution and hope in the race to improve ocean monitoring with emerging technologies. To set up an interview with Trembanis, visit his profile and click on the contact button.

2 min

A path to fair minerals trade: Researcher champions global trust model

As the world races to build cleaner energy systems and powerful AI technologies, the demand for critical minerals—like lithium, cobalt, and rare earths—is soaring. But with this demand comes rising global tension over who controls these resources. University of Delaware Professor Saleem Ali, an international expert in environmental policy and chair of UD's Department of Geography and Spatial Sciences, is suggesting a new way forward. In a new article published in Science, along with a United Nations policy brief, Ali and his coauthors propose the creation of a Global Minerals Trust. The article notes how the international plan would help countries work together to manage and share critical minerals fairly and sustainably—avoiding political fights, price shocks and environmental damage. “Without a shared framework, we risk deepening global inequalities, triggering unnecessary resource conflicts and undermining our ability to deliver on climate goals,” says Ali, who also leads the Critical Minerals and Inclusive Energy Transition program at the United Nations University Institute for Water, Environment and Health. The proposed Trust would use independent checks—similar to those used in nuclear safety—to make sure countries are meeting environmental and social standards. Each nation would keep control of its own resources but agree to prioritize sales of those minerals at market prices so that they can be used for clean energy infrastructure. The article builds on a TED Talk that Ali gave last year as part of the Rockefeller Foundation's "Big Bets" initiative. Ali is available for interviews on the topic and can be reached by clicking on his profile.

View all posts