Virtual reality training tool helps nurses learn patient-centered care

Apr 7, 2025

5 min



University of Delaware computer science students have developed a digital interface as a two-way system that can help nurse trainees build their communication skills and learn to provide patient-centered care across a variety of situations. This virtual reality training tool would enable users to rehearse their bedside manner with expectant mothers before ever encountering a pregnant patient in person.


The digital platform was created by students in Assistant Professor Leila Barmaki’s Human-Computer Interaction Laboratory, including senior Rana Tuncer, a computer science major, and sophomore Gael Lucero-Palacios.


Lucero-Palacios said the training helps aspiring nurses practice more difficult and sensitive conversations they might have with patients.


"Our tool is targeted to midwifery patients,” Lucero-Palacios said. “Learners can practice these conversations in a safe environment. It’s multilingual, too. We currently offer English or Turkish, and we’re working on a Spanish demo.”


This type of judgement-free rehearsal environment has the potential to remove language barriers to care, with the ability to change the language capabilities of an avatar. For instance, the idea is that on one interface the “practitioner” could speak in one language, but it would be heard on the other interface in the patient’s native language. The patient avatar also can be customized to resemble different health stages and populations to provide learners a varied experience.


Last December, Tuncer took the project on the road, piloting the virtual reality training program for faculty members in the Department of Midwifery at Ankara University in Ankara, Turkey. With technical support provided by Lucero-Palacios back in the United States, she was able to run a demo with the Ankara team, showcasing the UD-developed system’s interactive rehearsal environment’s capabilities.


Last winter, University of Delaware senior Rana Tuncer (left), a computer science major, piloted the virtual reality training program for Neslihan Yilmaz Sezer (right), associate professor in the Department of Midwifery, Ankara University in Ankara, Turkey.


Meanwhile, for Tuncer, Lucero-Palacios and the other students involved in the Human-Computer Interaction Laboratory, developing the VR training tool offered the opportunity to enhance their computer science, data science and artificial intelligence skills outside the classroom.


“There were lots of interesting hurdles to overcome, like figuring out a lip-sync tool to match the words to the avatar’s mouth movements and figuring out server connections and how to get the languages to switch and translate properly,” Tuncer said.


Lucero-Palacios was fascinated with developing text-to-speech capabilities and the ability to use technology to impact patient care.


“If a nurse is well-equipped to answer difficult questions, then that helps the patient,” said Lucero-Palacios.


The project is an ongoing research effort in the Barmaki lab that has involved many students. Significant developments occurred during the summer of 2024 when undergraduate researchers Tuncer and Lucero-Palacios contributed to the project through funding support from the National Science Foundation (NSF). However, work began before and continued well beyond that summer, involving many students over time. UD senior Gavin Caulfield provided foundational support to developing the program’s virtual environment and contributed to development of the text-to-speech/speech-to-text capabilities. CIS doctoral students Fahim Abrar and Behdokht Kiafar, along with Pinar Kullu, a postdoctoral fellow in the lab, used multimodal data collection and analytics to quantify the participant experience.


“Interestingly, we found that participants showed more positive emotions in response to patient vulnerabilities and concerns,” said Kiafar.



The work builds on previous research Barmaki, an assistant professor of computer and information sciences and resident faculty member in the Data Science Institute, completed with colleagues at New Jersey Institute of Technology and University of Central Florida in an NSF-funded project focused on empathy training for healthcare professionals using a virtual elderly patient. In the project, Barmaki employed machine learning tools to analyze a nursing trainee’s body language, gaze, verbal and nonverbal interactions to capture micro-expressions (facial expressions), and the presence or absence of empathy.


“There is a huge gap in communication when it comes to caregivers working in geriatric care and maternal fetal medicine,” said Barmaki. “Both disciplines have high turnover and challenges with lack of caregiver attention to delicate situations.”


UD senior Rana Tuncer (center) met with faculty members Neslihan Yilmaz Sezer (left) and Menekse Nazli Aker (right) of Ankara University in Ankara, Turkey, to educate them about the virtual reality training tool she and her student colleagues have developed to enhance patient-centered care skills for health care professionals.


When these human-human interactions go wrong, for whatever reason, it can extend beyond a single patient visit. For instance, a pregnant woman who has a negative health care experience might decide not to continue routine pregnancy care.


Beyond the project’s potential to improve health care professional field readiness, Barmaki was keen to note the benefits of real-world workforce development for her students.


“Perceptions still exist that computer scientists work in isolation with their computers and rarely interact, but this is not true,” Barmaki said, pointing to the multi-faceted team members involved in this project. “Teamwork is very important. We have a nice culture in our lab where people feel comfortable asking their peers or more established students for help.”


Barmaki also pointed to the potential application of these types of training environments, enabled by virtual reality, artificial intelligence and natural language processing, beyond health care. With the framework in place, she said, the idea could be adapted for other types of training involving human-human interaction, say in education, cybersecurity, even in emerging technology such as artificial intelligence (AI). Keeping people at the center of any design or application of this work is critical, particularly as uses for AI continue to expand.


“As data scientists, we see things as spreadsheets and numbers in our work, but it’s important to remember that the data is coming from humans,” Barmaki said.


While this project leverages computer vision and AI as a teaching tool for nursing assistants, Barmaki explained this type of system can also be used to train AI and to enable more responsible technologies down the road. She gave the example of using AI to study empathic interactions between humans and to recognize empathy.


“This is the most important area where I’m trying to close the loop, in terms of responsible AI or more empathy-enabled AI,” Barmaki said. “There is a whole area of research exploring ways to make AI more natural, but we can’t work in a vacuum; we must consider the human interactions to design a good AI system.”


Asked whether she has concerns about the future of artificial intelligence, Barmaki was positive.


“I believe AI holds great promise for the future, and, right now, its benefits outweigh the risks,” she said.

You might also like...

Check out some other posts from University of Delaware

2 min

Summit examines how democracy can survive a toxic media environment

Journalists, scholars, students and civic leaders from across the U.S. and abroad will explore the evolving relationship between media and democracy May 5-6 at the University of Delaware. The second SNF Ithaca x iMEdD Media and Democracy Summit will examine how we can thrive in a toxic media environment where misinformation spreads, local journalism is in decline and trust in traditional institutions has eroded. The event is co-hosted by the Stavros Niarchos Foundation (SNF) Ithaca Initiative at the University of Delaware, the Joseph R. Biden, Jr. School of Public Policy and Administration and the incubator for Media Education & Development (iMEdD). The summit will engage participants in urgent conversations about media’s role in shaping informed citizenship and democratic resilience. A selection of confirmed speakers includes: ▪ Carmela Boykin, The Washington Post ▪ Astead W. Herndon, The New York Times ▪ Gianluca Mezzofiore, CNN ▪ Domenico Montanaro, NPR ▪ Tara Palmeri, The Red Letter ▪ Dave Rubin, The Rubin Report Additional speakers include representatives from Media Matters for America, WHYY, Spotlight Delaware, Delaware Public Media, 2Puntos and more. The program will also feature workshops on digital storytelling and short-form video, panels on misinformation, and discussions about rebuilding trust and reimagining journalism for a new generation. The event takes place at the Trabant University Center, 17 W. Main Street, Newark, Del. To cover the summit, contact mediarelations@udel.edu. Timothy Shaffer, SNF Chair of Civil Discourse and associate professor of public policy and administration at UD, is available for interviews in advance of the event. To arrange an interview, visit his profile and click on the contact button. About the SNF Ithaca Initiative SNF Ithaca, an initiative of the University of Delaware's Joseph R. Biden, Jr. School of Public Policy & Administration, seeks to advance democracy by equipping students with the civil discourse and civic engagement skills necessary to navigate the mediated public square. Supported by the Stavros Niarchos Foundation (SNF), SNF Ithaca is named after the home of Odysseus—one of Greek mythology's greatest heroes. For Odysseus, Ithaca represents not only the beginning of a journey but the ultimate destination. Likewise, the SNF Ithaca Initiative serves as both the beginning of the Biden School students' journey toward becoming engaged and effective citizens and as the ultimate destination for students across the country to come together and work in partnership to develop policy solutions.

2 min

Education expert: Delaware needs to reform its education funding system

In the next year, residents of Delaware will have the opportunity to voice their opinions about school funding in support of the students and teachers in the state's public schools. School funding reform is urgently needed. Delaware has an unusually high number of students requiring additional resources to succeed — including students with disabilities, students living in poverty, and English learners. While Delaware spends more than the national average on public education, the funding is not sufficient to meet the needs of these students and their teachers. The evidence is clear. Compared to other states, Delaware ranks near the bottom in reading and math performance, according to the Nation’s Report Card (the National Assessment of Educational Progress). Reading and math scores have been declining for the past decade, with 8th grade reading reaching an all-time low in 2024. Delaware’s spending has not kept up with student needs, and the state struggles to compete with neighboring states for top teaching talent. Beginning teacher salaries are the lowest among nearby states, with even lower salaries in less wealthy communities. Unlike every other state, Delaware does not allocate more funds to districts with less property wealth, further deepening disparities. The stakes are high. Delaware’s students and teachers deserve strong support, and the state’s economy — including businesses, employers, and universities — depends on graduates who are well-prepared for careers and higher education. Delaware’s current school funding system, largely unchanged for 80 years, lags behind reforms enacted in other states. Many states have shifted funding to prioritize student needs and address inequities, resulting in measurable improvements in academic achievement, graduation rates, school climate, and college and career readiness. In the coming months, the Public Education Funding Commission will complete its review and present recommendations to update the funding system. When Governor Matt Meyer — a champion for Delaware’s public schools — sends his recommendations to the General Assembly for consideration, public understanding and engagement will be crucial. –––– Gary Henry is a professor at the University of Delaware and a commissioner on the Public Education Funding Commission. He specializes in education policy, educational evaluation, educator labor markets, and quantitative research methods. He is available for interviews on education funding, accountability and related policy changes, helping ensure Delawareans are fully informed as they prepare to voice their views on this important investment in the state’s future. He has advised various states on education funding including Virginia, North Carolina, Georgia and Texas. 

2 min

Researchers laying the groundwork to eventually detect cerebral palsy via blood test

At the University of Delaware, molecular biologist Mona Batish in collaboration with Dr. Robert Akins at Nemours Children Hospital, is studying tiny loops in our cells called circular RNAs — once thought to be useless leftovers, but now believed to play an important role in diseases like cancer and cerebral palsy (CP). This is detailed in a new article in the Journal of Biological Chemistry. What are circular RNAs? They’re a special type of RNA that doesn’t make proteins but instead helps control how genes are turned on and off. Because they’re stable and can be found in blood, they may help doctors detect diseases more easily. So what’s the connection to cerebral palsy? CP is the most common physical disability in children, but right now it’s diagnosed only after symptoms appear — there’s no clear-cut test for it. Batish and her team are trying to change that. Working with researchers at Nemours Children’s Health, Batish discovered that in children with CP, a certain circular RNA — circNFIX — is found at much lower levels in muscle cells. This RNA normally helps the body make an important muscle-building protein called MEF2C. When circNFIX is missing or low, MEF2C isn’t made properly, which may lead to the weakened, shorter muscles seen in CP. This is the first time researchers have shown a link between circular RNAs and human muscle development in cerebral palsy. Why does this matter? If scientists can confirm this link, it could lead to: Earlier and more accurate diagnosis of CP using a simple blood test New treatments that help improve muscle development in affected children Batish’s ultimate goal? To create a test that can spot CP at birth — or even before — giving kids a better shot at early treatment and a higher quality of life. To speak to Batish, contact mediarelations@udel.edu. 

View all posts