Eric Burns

Associate Professor Louisiana State University

  • Baton Rouge LA

Dr. Burns uses multidisciplinary research to understand how the universe works.

Contact

Louisiana State University

View more experts managed by Louisiana State University

Biography

Dr Burns focuses on cosmic explosions - supernova, gamma-ray bursts, neutron star mergers, and magnetar giant flares. He utilizes data from NASA's satellite fleet in concert with Earth-based facilities including LIGO in order to probe fundamental questions of the universe. These include the first precise measurement of the speed of gravity, understanding where the heaviest elements like gold come from, and trying to break foundational theories in physics. He is currently one of a dozen scientists tasked with maturing NASA's Habitable Worlds Observatory concept towards a future launch, which will answer the question: are we alone?

Areas of Expertise

Astrophysics
Nuclear Science
Gravitational Waves
Cosmic Explosions
Supernova
Gamma-ray Bursts
Neutron Star Mergers
Magnetar Giant Flares

Research Focus

High-Energy Transients & Gamma-Ray Bursts

Dr. Burns’s research focuses on high-energy transient astrophysical events—gamma-ray bursts, neutron-star mergers, and other multi-messenger phenomena that forge heavy elements like gold. He analyzes space-borne gamma-ray observations and multi-messenger datasets to uncover explosion mechanisms and trace the cosmic origins of the universe’s heaviest matter.

Accomplishments

Habitable Worlds Observatory Community Science & Instrument Team

2025-Present

Lead of the InterPlanetary Network

2022-Present

NASA Early Career Public Achievement Medal

2020

Education

University of Alabama in Huntsville

Ph.D.

2017

Spotlight

5 min

Astrophysicists Strike Gold

BATON ROUGE – Since the Big Bang, the early universe had hydrogen, helium, and a scant amount of lithium. Later, some heavier elements, including iron, were forged in stars. But one of the biggest mysteries in astrophysics is: How did the first elements heavier than iron, such as gold, get created and distributed throughout the universe? A new answer has come from an unexpected place – magnetars. Neutron stars are the collapsed cores of stars that have exploded. They are so dense that one teaspoon of neutron star material, on Earth, would weigh as much as a billion tons. A magnetar is a neutron star with an extremely powerful magnetic field. On rare occasions, magnetars release an enormous amount of high-energy radiation when they undergo “starquakes,” which, like earthquakes, fracture the neutron star’s crust. Starquakes may also be associated with powerful bursts of radiation called magnetar giant flares, which can even affect Earth’s atmosphere. Only three magnetar giant flares have been observed in the Milky Way and the nearby Large Magellanic Cloud, and seven from other nearby galaxies. Astrophysicist Eric Burns and his team of researchers at Louisiana State University in Baton Rouge study magnetars extensively through the observation of gamma-rays. These are the most energetic photons, most famous for turning Bruce Banner into the Incredible Hulk. Burns joined with researchers at Columbia University and other institutions to see if we could use gamma-rays to understand if magnetar giant flares forge the heaviest elements, and unexpectedly found the smoking-gun signature in decades-old data. The study, led by Anirudh Patel, a doctoral student at Columbia University in New York, is published in The Astrophysical Journal Letters. “It’s answering one of the questions of the century and solving a mystery using archival data that people had just forgotten about, demonstrating something that occurred when the Universe was younger,” said Burns. “Giant flares should occur just after the first stars died, meaning we have identified what could be the origin of the first gold in the universe.” How could gold be made at a magnetar? Patel and colleagues, including his advisor Brian Metzger, Professor at Columbia University and senior research scientist at the Flatiron Institute in New York, have been thinking about how radiation from giant flares could correspond to heavy elements forming there. This would happen through a “rapid process” of neutrons forging lighter atomic nuclei into heavier ones. Protons define the element’s identity on the periodic table: hydrogen has 1 proton, helium has 2, lithium has 3, and so on. Atoms also have neutrons which do not affect identity, but do add mass. Sometimes when an atom captures an extra neutron the atom becomes unstable and a nuclear decay process happens that converts a neutron into a proton, moving the atom forward on the periodic table. This is how, for example, a gold atom could take on an extra neutron and then transform into mercury. In the unique environment of a disrupted neutron star, in which the density of neutrons is extremely high, something even stranger happens: single atoms can rapidly capture so many neutrons that they undergo multiple decays, leading to the creation of a much heavier element like uranium. When astronomers observed the collision of two neutron stars in 2017 using NASA telescopes and the gravitational wave observatory LIGO, they confirmed that this event could have created gold, platinum, and other heavy elements. “LIGO tells us there was a merger of compact objects, and Fermi tells us there was a short gamma-ray burst. Together, we know that what we observed was the merging of two neutron stars, dramatically confirming the relationship,” said Burns. But neutron star mergers happen too late in the universe’s history to explain the earliest gold and other heavy elements. Finding secrets in old data At first, Metzger and colleagues thought that the easiest signature to study from the creation and distribution of heavy elements at a magnetar would appear in the visible and ultraviolet light, and published their predictions. But Burns in Louisiana wondered if there could be a gamma ray signal bright enough to be detected, too. He asked Metzger and Patel to work out what that signal could look like. Burns looked up the gamma ray data from the last giant flare that was observed, which was in December 2004. He realized that while scientists had explained the beginning of the outburst, they had also identified a smaller signal from the magnetar, in data from ESA (European Space Agency)’s INTEGRAL, a retired mission with NASA contributions. “It was noted at the time, but nobody had any conception of what it could be,” Burns said. Metzger remembers that Burns thought he and Patel were “pulling his leg” because the prediction from their team’s model so closely matched the mystery signal in the 2004 data. In other words, the gamma ray signal detected over 20 years ago corresponded to what thought it should look like when heavy elements are created and then distributed in a magnetar giant flare. "This is my favorite discovery I've contributed to,” said Burns. “My colleagues found this signal in the past, but nobody knew what it could be at the time. Once these models were ready, everything fit like a perfect puzzle, which is extremely rare in science." Researchers supported their conclusion using data from two NASA heliophysics missions: the retired RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) and the ongoing NASA Wind satellite, which had also observed the magnetar giant flare. Other collaborators on the new study included Jared Goldberg at the Flatiron Institute. Next steps in the magnetar gold rush Patel’s study estimates that magnetar giant flares could contribute about 10% of the total abundance of elements heavier than iron in the galaxy. Since magnetars existed relatively early in the history of the universe, the first gold could have been created this way. LSU PhD candidate Aaron Trigg, a NASA FINESST (Future Investigators in NASA Earth and Space Science and Technology) fellow, who works with Burns, is responsible for finding more magnetar giant flares to study. “These are gargantuan outbursts of energy from the strongest magnets in the Universe, which are powerful enough to affect Earth’s atmosphere,” said Burns. Trigg’s work will help us better understand these sources.” NASA’s forthcoming COSI (Compton Spectrometer and Imager) mission can follow up on these results. COSI, a wide-field gamma ray telescope, is expected to launch in 2027 and will study energetic phenomena in the cosmos, such as magnetar giant flares. COSI will be able to identify individual elements created in these events, providing a new advancement in understanding the origin of the elements. LSU is one of the lead science institutes for COSI. Burns and LSU Assistant Professor Michela Negro have key responsibilities in the mission, and Trigg is working through how best to study giant flares with COSI. These LSU astrophysicists will be growing their research group as they approach launch in 2027. “I have so many questions about the cosmos and our place in it,” said Trigg. “This research allows me to explore those questions and share the answers with the world.”

Eric Burns

Media Appearances

We figured out where gold comes from. The answer is explosive.

The Washington Post  online

2025-05-04

“If you disrupt the neutron star, you have now freed the densest matter in the universe that’s mostly comprised of neutrons,” said Eric Burns, a co-author on the study and astrophysicist at Louisiana State University

View More

The Universe’s Gold May Come From a Totally Unexpected Kind of Star

Gizmodo  online

2025-05-01

“It’s answering one of the questions of the century and solving a mystery using archival data that had been nearly forgotten,” said Eric Burns, an astrophysicist at LSU and co-author of the paper, in a NASA release.

View More

Explosion 1 million times brighter than the Milky Way creates rare elements

CNN  online

2023-10-27

“This burst is way into the long category. It’s not near the border. But it seems to be coming from a merging neutron star,” said study coauthor Eric Burns, assistant professor of physics and astronomy at Louisiana State University, in a statement.

View More

Show All +

Articles

Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from the SGR 1806–20 Magnetar Giant Flare

The Astrophysical Journal Letters

2025

The origin of heavy elements synthesized through the rapid neutron capture process (r-process) has been an enduring mystery for over half a century. J. Cehula et al. recently showed that magnetar giant flares, among the brightest transients ever observed, can shock heat and eject neutron star crustal material at high velocity, achieving the requisite conditions for an r-process. A. Patel et al. confirmed an r-process in these ejecta using detailed nucleosynthesis calculations. Radioactive decay of the freshly synthesized nuclei releases a forest of gamma-ray lines, Doppler broadened by the high ejecta velocities v ≳ 0.1c into a quasi-continuous spectrum peaking around 1 MeV. Here, we show that the predicted emission properties (light curve, fluence, and spectrum) match a previously unexplained hard gamma-ray signal seen in the aftermath of the famous 2004 December giant flare from the magnetar SGR 1806–20.

View more

Prompt Gamma-Ray Burst Recognition through Waterfalls and Deep Learning

The Astrophysical Journal

2025

Gamma-ray bursts (GRBs) are one of the most energetic phenomena in the cosmos, whose study can probe physics extremes beyond the reach of laboratories on Earth. Our quest to unravel the origin of these events and understand their underlying physics is far from complete. Central to this pursuit is the rapid classification of GRBs to guide follow-up observations and analysis across the electromagnetic spectrum and beyond. Here, we introduce a compelling approach that can set a milestone toward a new and robust GRB prompt classification method. Leveraging self-supervised deep learning, we pioneer a previously unexplored data product to approach this task: GRB waterfalls.

View more

Heavy-element production in a compact object merger observed by JWST

Nature

2023

The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs)1, sources of high-frequency gravitational waves (GWs)2 and likely production sites for heavy-element nucleosynthesis by means of rapid neutron capture (the r-process)3. Here we present observations of the exceptionally bright GRB 230307A. We show that GRB 230307A belongs to the class of long-duration GRBs associated with compact object mergers4,5,6 and contains a kilonova similar to AT2017gfo, associated with the GW merger GW170817 (refs. 7,8,9,10,11,12). We obtained James Webb Space Telescope (JWST) mid-infrared imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns, which we interpret as tellurium (atomic mass A = 130) and a very red source, emitting most of its light in the mid-infrared owing to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can create r-process elements across a broad atomic mass range and play a central role in heavy-element nucleosynthesis across the Universe.

View more

Show All +

Research Grants

Collaborative Research: New Windows on the Dynamic Universe with the Vera C. Rubin Observatory, the InterPlanetary Network, and the International Gravitational Wave Network

NSF Award

2024-2028

Modernizing the InterPlanetary Network

NASA

2025-2027