Media
Documents:
Photos:
Videos:
Audio/Podcasts:
Links (2)
Biography
Ram B. Gupta began his tenure as an associate dean and professor in the College of Engineering at the Virginia Commonwealth University on August 15, 2014. Since then, the College has enhanced its national reputation as an engine of education and research and made important contributions to the success of student, staff, and faculty. With his passion and expertise is in creating and maintaining an innovative, healthy, and excellent academic and research environment, he grew the sponsored research multi-fold.
Widely regarded as one of the nation’s leading researchers on sustainable energy, materials, and technologies, Gupta is a frequent keynote speaker and writer on the new developments and innovations. Media outlets, including Reuters, London Daily Mail, Japan News, Science Newsline, Chemistry News, and Agriculture Markets, have covered his work. His books are Nanoparticle Technology for Drug Delivery (2006, Taylor & Francis), Solubility in Supercritical Carbon Dioxide (2007, CRC Press), Hydrogen Fuel: Production, Transport, and Storage (2008, CRC Press), Gasoline, Diesel and Ethanol Biofuels from Grasses and Plants (Cambridge University Press, 2010), and Compendium of Hydrogen Energy (Elsevier, 2015), which are used worldwide.
Previously, Gupta served the U.S. National Science Foundation (NSF) as director of the Energy for Sustainability program. Currently, he provides expert help to NSF in its Engineering Research Centers program. He began his career a faculty member in engineering at Auburn University, rising through the ranks and serving as the chair of graduate program in chemical engineering. For his academic excellence, he has been given many notable awards, endowed professorships, and 54 research grants.
Gupta is a Fellow of the American Institute of Chemical Engineers and a Fellow of the Alabama Academy of Science. He received B.E. from Indian Institute of Technology, M.S. from University of Calgary, and Ph.D. from the University of Texas at Austin, all in chemical engineering. After that, he completed postdoctoral work at the University of California, Berkeley. Recently, he completed Management Development Program at Harvard University.
Industry Expertise (7)
Energy
Pharmaceuticals
Cleantech
Nanotechnology
Chemicals
Research
Education/Learning
Areas of Expertise (18)
Batteries
Electrochemical engineering
Bio-carbon
Supercritical carbon dioxide technology
Nanotechnology
Nanoparticles
Nanomedicine
Controlled release
Supercritical water technology
Hydrogen fuel
Renewable fuels
Bio-energy
Liquid fuels from methane and biomass
CO2 sequestration
Photochemical engineering
Oil spill remediation using benign dispersants
Renewable materials
Nickel-cobalt-Manganese cathode
Education (5)
University of California, Berkeley: Postdoc, Chemical Engineering 1995
The University of Texas at Austin: Ph.D., Chemical Engineering 1993
University of Calgary: M.S., Chemical Engineering 1989
Indian Institute of Technology, Roorkee: B.E., Chemical Engineering 1987
Harvard University: Management Development Program 2018
Affiliations (2)
- Fellow, American Institute of Chemical Engineers
- Fellow, Alabama Academy of Science
Media Appearances (1)
VCU receives $2.5M grant to extend battery life development
Virginia Business online
2020-02-13
VCU researchers believe they can significantly extend battery life, drive down costs and reduce safety risks by redesigning materials found in lithium-ion batteries, which are commonly used to power smartphones and other electronic devices. The project will be run by Ram B. Gupta, associate dean for faculty research development and a professor of chemical and life science engineering at VCU’s College of Engineering. Gupta and his team will test an approach for synthesizing material for the battery’s cathode.
Research Focus (3)
Batteries and Supercapacitors
Use of novel electrochemical engineering and materials technology to improve batteries and supercapacitors for cell phones and cars.
Pharmaceutical manufacturing
Use of electro-catalysis and nanotechnology to simplify pharmaceutical manufacturing pathways.
Sustainable fuel
Use of supercritical water technology to produce fuel and bio-carbon from biomass.
Patents (6)
Particulate formulations for enhancing growth in animals
US 11,135,288
2021-10-05
Disclosed are compositions, kits, and methods for enhancing growth in an animal in need thereof. The methods typically comprise administering orally to the animal a composition comprising biodegradable particles, the biodegradable particles comprising a polymer or a co-polymer comprising polymerized lactic acid and having an effective average diameter of 0.5-5 micron. In the methods, the animal is administered a dose of the biodegradable particles that is effective for improving feed conversion rate in the animal in comparison to an animal that is not administered the composition.
Particulate Formulations For Improving Feed Conversion Rate In A Subject
US 10,293,044
2019-05-21
Disclosed are compositions, kits, and methods for improving feed conversion rate in an animal in need thereof. The methods typically comprise administering orally to the animal a composition comprising biodegradable particles, the biodegradable particles comprising a polymer or a co-polymer comprising polylactide (PLA) and having an effective average diameter of 0.5-5 μm. In the methods, the animal is administered a dose of the biodegradable particles that is effective for improving feed conversion rate in the animal in comparison to an animal that is not administered the composition.
Fabric having ultraviolet radiation protection, enhanced resistance to degradation, and enhanced resistance to fire
US 9234310 B2
2016-01-12
A method for treating a fabric for ultraviolet radiation protection, enhanced resistance to degradation, and enhanced resistance to fire is disclosed which comprises the steps of adding zinc oxide nanoparticles to a solution of 3-glycidyloxypropyl-trimethoxysilane, placing a fabric in the mixture of zinc oxide particles and 3-glycidyloxypropyl-trimethoxysilane, curing the fabric, and washing the fabric. Other methods of treating a fabric are disclosed.
Biomass to biochar conversion in subcritical water
US 8637718 B2
2014-01-28
A method and system of converting biomass to biochar in a hydrothermal carbonization apparatus wherein subcritical water at a temperature of 230-350° C. and 500-3000 psi is reacted with the biomass to form biochar, biocrude and gases. The method and system include recycling the biocrude back to the hydrothermal carbonization apparatus which improves biochar yield and provides water for the biomass reaction to occur.
Fabric having ultraviolet radiation protection
US 9,284,682
2016-03-15
A method for treating a fabric for ultraviolet radiation protection is disclosed which comprises the steps of adding zinc oxide nanoparticles to a solution of 3-glycidyloxypropyl-trimethoxysilane, adding silicon dioxide to the mixture of zinc oxide nanoparticles and 3-glycidyloxypropyl-trimethoxysilane, placing a fabric in the mixture of zinc oxide nanoparticles, 3-glycidyloxypropyl-trimethoxysilane, and silicon dioxide, curing the fabric, and washing the fabric.
Method of forming nanoparticles and microparticles of controllable size using supercritical fluids with enhanced mass transfer
US 6620351 B2
2003-09-16
The current invention, Supercritical Antisolvent Precipitation with Enhanced Mass Transfer (SAS-EM) provides a significantly improved method for the production of nano and micro-particles with a narrow size distribution. The processes of the invention utilize the properties of supercritical fluids and also the principles of virbrational atomization to provide an efficient technique for the effective nanonization or micronization of particles. Like the SAS technique, SAS-EM, also uses a supercritical fluid as the antisolvent, but in the present invention the dispersion jet is deflected by a vibrating surface that atomizes the jet into fine droplets. The vibrating surface also generates a vibrational flow field within the supercritical phase that enhances mass transfer through increased mixing. Sizes of the particles obtained by this technique are easily controlled by changing the vibration intensity of the deflecting surface, which in turn is controlled by adjusting the power input to the vibration source. A major advantage of the SAS-EM technique is that it can be successfully used to obtain nanoparticles of materials that usually yield fibers or large crystals in SAS method. Microencapsulation via coprecipitation of two or more materials can also be achieved using the SAS-EM technique.
Selected Articles (65)
SnO2/SnO based redox thermochemical CO2splitting cycle: Effect of inert gas flowrate, reduction temperature, and gas separation on the solar-to-fuel energy conversion efficiency
Int J Energy Res. (2022), 46:9267–9280. DOI: http://doi.org/10.1002/er.7804Bhosale, Rahul R.; Shende, Rajesh V.; Gupta, Ram B.
2022
Facile Surface Coatings for Performance Improvement of NMC811 Battery Cathode Material
J. Electrochem. Soc. 169, 020565, https://iopscience.iop.org/article/10.1149/1945-7111/ac5302Sun, Xiao-Guang; Jafta, Charl J; Tan, Susheng; Gupta, Ram B.; Paranthaman, Mariappan Parans
2022
Graphitized Biocarbon Derived from Hydrothermally Liquefied Low-Ash Corn Stover
Ind. Eng. Chem. Res. (2022), 61, 1, 392–402, https://doi.org/10.1021/acs.iecr.1c03820Shell, Katelyn M.; Amar, Vinod S.; Bobb, Julian A.; Hernandez, Sergio; Shende, Rajesh V.; Gupta, Ram B.
2022
Lignin-Derived Carbon-Coated Functional Paper for Printed Electronics
ACS Applied Electronic Materials (2021), 3(9), 3904-3914, DOI: 10.1021/acsaelm.1c00502Altay, Bilge Nazli; Aksoy, Burak; Banerjee, Debika; Maddipatla, Dinesh; Fleming, Paul D.; Bolduc, Martin; Cloutier, Sylvain G.; Atashbar, Massood Z.; Gupta, Ram B.; Demir, Muslum
2021
Application of Zn-ferrite towards thermochemical utilization of carbon dioxide: A thermodynamic investigation
Energy Conversion and Management (2021), v245, 114528, https://doi.org/10.1016/j.enconman.2021.114528Bhosale, Rahul R.; Shende, Rajesh V.; Gupta, Ram B.
2021
Phytoremediation of Nickel via Water Hyacinth for Biocarbon-Derived Supercapacitor Applications
Energy Technol. (2021) 2100130. https://doi.org/10.1002/ente.202100130Shell, K.M., Vohra, S.Y., Rodene, D.D. and Gupta, R.B.
2021
Hydrothermal liquefaction (HTL) processing of unhydrolyzed solids (UHS) for hydrochar and its use for asymmetric supercapacitors with mixed (Mn,Ti)-Perovskite oxides
Renewable Energy (2021), 173, p 329-341, https://doi.org/10.1016/j.renene.2021.03.126Amar, V.S.; J.D. Houck, B. Maddipudi, T.A. Penrod, K.M. Shell, A. Thakkar, A.R. Shende, S. Hernandez, S. Kumar, R.B. Gupta, R.V. Shende,
2021
Production of levulinic acid and biocarbon electrode material from corn stover through an integrated biorefinery process
Fuel Processing Technology (2021), 213, 106644, https://doi.org/10.1016/j.fuproc.2020.106644Thakkar, Anuj; Shell, Katelyn M.; Bertosin, Martino; Rodene, Dylan D.; Amar, Vinod; Bertucco, Alberto; Gupta, Ram B.; Shende, Rajesh; Kumar, Sandeep
2021
Supercapacitor Performance of Corn Stover-derived Biocarbon Produced from the Solid Co-products of a Hydrothermal Liquefaction Process
Bioresource Technology Reports, 2021, 100625, ISSN 2589-014X, https://doi.org/10.1016/j.biteb.2021.100625Katelyn M. Shell, Dylan D. Rodene, Vinod Amar, Anuj Thakkar, Bharathkiran Maddipudi, Sandeep Kumar, Rajesh Shende, Ram B. Gupta
2021
Thermochemical splitting of CO2 using solution combustion synthesized lanthanum-strontium-manganese perovskites
Fuel (2021), 285, 119154. DOI: 10.1016/j.fuel.2020.119154Takalkar, Gorakshnath; Bhosale, Rahul R.; AlMomani, Fares; Rashid, Suliman; Qiblawey, Hazim; Saleh Saad, Mohammed Ali; Khraisheh, Majeda; Kumar, Gopalakrishnan; Gupta, Ram B.; Shende, Rajesh V.
2021
Development and application of high-throughput screens for the discovery of compounds that disrupt ErbB4 signaling: Candidate cancer therapeutics
PLoS One. 2020 Dec 30;15(12):e0243901. doi: 10.1371/journal.pone.0243901. PMID: 333783764. Cullum RL, Lucas LM, Senfeld JI, Piazza JT, Neel LT, Whig K, Zhai L, Harris MH, Rael CC, Taylor DC, Cook LJ, Kaufmann DP, Mill CP, Jacobi MA, Smith FT, Suto M, Bostwick R, Gupta RB, David AE, Riese Ii DJ
2020
Multifunctional Electrocatalytic Cathodes Derived from Metal-Organic Frameworks for Advanced Lithium-Sulfur Batteries
Chemistry - A European Journal (2020), Ahead of Print. DOI: 10.1002/chem.202001664Abdelkader, Ahmed A.; Rodene, Dylan D.; Norouzi, Nazgol; Alzharani, Ahmed; Weeraratne, K. Shamara; Gupta, Ram B.; El-Kaderi, Hani M.
2020
Electrocatalytic Cathodes Based on Cobalt Nanoparticles Supported on Nitrogen-Doped Porous Carbon by Strong Electrostatic Adsorption for Advanced Lithium-Sulfur Batteries
Energy & Fuels (2020), 34(10), 13038-13047. DOI: 10.1021/acs.energyfuels.0c01859Abdelkader, Ahmed A.; Norouzi, Nazgol; Rodene, Dylan D.; Alzharani, Ahmed; Gupta, Ram B.; El-Kadri, Hani M.
2020
Electrocatalytic Activity of Bimetallic Ni-Mo-P Nanocrystals for Hydrogen Evolution Reaction
ACS Applied Nano Materials, 2020, doi.org/10.1021/acsanm.0c01624Eladgham, Ebtesam H.; Rodene, Dylan D.; Sarkar, Rajib; Arachchige, Indika U.; Gupta, Ram B.
2020
Beneficiation of coal using supercritical water and carbon dioxide extraction: sulfur removal.
Int J Coal Sci TechnolDeCuir, M.; Gupta, Ram B.; Sastri, B.
2020
Crystal Structure and Composition-Dependent Electrocatalytic Activity of Ni-Mo Nanoalloys for Water Splitting To Produce Hydrogen
ACS Appl. Energy Mater. 2, 10, 7112-7120, DOI:10.1021/acsaem.9b01043Rodene, Dylan D.; Eladgham, Ebtesam H.; Gupta, Ram B.; Arachchige, Indika U.; Tallapally, Venkatesham
2019
Developments in the Encapsulation of Bioactives Using Supercritical CO2
Reference Module in Food Science, 2019, DOI: 10.1016/B978-0-08-100596-5.22674-7Gönen, Mehmet; Gupta, Ram B
2019
Transition metal doped ceria for solar thermochemical fuel production
Solar Energy 172, 2018, 204-211.Takalkar, G. D.; Bhosale, R. R.; Kumar, A.; Al Momani, F.; Khraisheh, M.; Shakoor, R. A.; Gupta, Ram B.
2018
Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light
Renewable & Sustainable Energy Reviews, 2018, 89, 228-248.Saraswat, Sushil Kumar; Rodene, Dylan D.; Gupta, Ram B.
2018
Rapid transformation of heterocyclic building blocks into nanoporous carbons for high-performance supercapacitors
RSC Advances, 2018, 8(22), 12300-12309, DOI:10.1039/C8RA00546JAshourirad, Babak; Demir, Muslum; Smith, Ryon A.; Gupta, Ram B.; El-Kaderi, Hani M.
2018
Nitrogen and oxygen dual-doped porous carbons prepared from pea protein as electrode materials for high performance supercapacitors
International Journal of Hydrogen Energy, 2018, 43(40), 18549-18558, DOI:10.1016/j.ijhydene.2018.03.220Demir, Muslum; Ashourirad, Babak; Mugumya, Jethrine H.; Saraswat, Sushil K.; El-Kaderi, Hani M.; Gupta, Ram B.
2018
Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO2 capture applications
International Journal of Energy Research, 2018, 42(8), 2686-2700, DOI:10.1002/er.4058Demir, Muslum; Tessema, Tsemre-Dingel; Farghaly, Ahmed A.; Nyankson, Emmanuel; Saraswat, Sushil K.; Aksoy, Burak; Islamoglu, Timur; Collinson, Maryanne M.; El-Kaderi, Hani M.; Gupta, Ram B.
2018
Supercapacitance and oxygen reduction characteristics of sulfur self-doped micro/mesoporous bio-carbon derived from lignin
Materials Chemistry and Physics, 2018, 216, 508-516, DOI:10.1016/j.matchemphys.2018.06.008Demir, Muslum; Farghaly, Ahmed A.; Decuir, Matthew J.; Collinson, Maryanne M.; Gupta, Ram B.
2018
Heterostructure-Promoted Oxygen Electrocatalysis Enables Rechargeable Zinc-Air Battery with Neutral Aqueous Electrolyte
Journal of the American Chemical Society, 2018, 140(50), 17624-17631. DOI:10.1021/jacs.8b09805An, Li; Zhang, Zhiyong; Feng, Jianrui; Lv, Fan; Li, Yuxuan; Wang, Rui; Lu, Min; Gupta, Ram B.; Xi, Pinxian; Zhang, Sen
2018
Heparin depolymerization by immobilized heparinase: A review
International Journal of Biological Macromolecules 2017, 99, 721-730.Bhushan, Indu; Alabbas, Alhumaidi; Sistla, Jyothi C.; Saraswat, Rashmi; Desai, Umesh R.; Gupta, Ram B.,
2017
Solar thermochemical ZnO/ZnSO4 water splitting cycle for hydrogen production,
Bhosale, Rahul; Kumar, Anand; Al Momani, Fares; Gupta, Ram B., International Journal of Hydrogen Energy 2017, DOI:10.1016/j.ijhydene.2017.02.1902017
Immobilization Alters Heparin Cleaving Properties of Heparinase I
Glycobiology 2017, 27, 994–998.Bhushan, Indu; Alabbas, Alhumaidi; Balagurunathan Kuberan.; Gupta, Ram B.; Desai, Umesh R.
2017
Synthesis of self-suspending silica proppants using photoactive hydrogels
Journal of Petroleum Science and Engineering 2017, 157, 651-656Gol, Reuben; Wang, Congzhou; Gupta, Ram B.; Yadavalli, Vamsi K.
2017
Hierarchical nitrogen-doped porous carbon derived from lecithin for high-performance supercapacitors
RSC Advances 2017, 7(67), 42430-42442. DOI:10.1039/C7RA07984BDemir, Muslum; Saraswat, Sushil Kumar; Gupta, Ram B.
2017
Kinetic Study and Modeling of Homogeneous Thermocatalytic Decomposition of Methane over a Ni–Cu–Zn/Al2O3 Catalyst for the Production of Hydrogen and Bamboo-Shaped Carbon Nanotubes
Saraswat, Sushil Kumar; Sinha, Bipul; Pant, K. K.; Gupta, Ram B., Industrial & Engineering Chemistry Research 2016, 55(45), 11672-11680.2016
CO2 Capture Using Aqueous Potassium Carbonate Promoted by Ethylaminoethanol: A Kinetic Study
Bhosale, Rahul R.; Kumar, Anand; AlMomani, Fares; Ghosh, Ujjal; AlNouss, Ahmed; Scheffe, Jonathan; Gupta, Ram B., Industrial & Engineering Chemistry Research 2016, 55(18), 5238-5246.2016
Boric Acid Production from Colemanite Together with ex Situ CO2 Sequestration
Gonen, Mehmet; Nyankson, Emmanuel; Gupta, Ram B., Industrial & Engineering Chemistry Research 2016, 55(17), 5116-5124.2016
Interfacially Active Hydroxylated Soybean Lecithin Dispersant for Crude Oil Spill Remediation,
Nyankson, Emmanuel; Demir, Muslum; Gonen, Mehmet; Gupta, Ram B., ACS Sustainable Chemistry & Engineering 2016, 4(4), 2056-2067.2016
Catalytic Upgrading of Methane to Higher Hydrocarbons in a Nonoxidative Chemical Conversion
Nahreen, Shaima; Praserthdam, Supareak; Perez Beltran, Saul; Balbuena, Perla B.; Adhikari, Sushil; Gupta, Ram B., Energy & Fuels 2016, 30(4), 2584-2593.2016
Advancements in Crude Oil Spill Remediation Research After the Deepwater Horizon Oil Spill
Nyankson, Emmanuel; Rodene, Dylan; Gupta, Ram B., Water, Air, & Soil Pollution 2016, 227(1), 1-22.2016
Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions
Owoseni Olasehinde; Zhang Yueheng; Nyankson Emmanuel; Gupta Ram B; Adams Daniel J; Spinu Leonard; He Jibao; McPherson Gary L; Bose Arijit; John Vijay T, Journal of colloid and interface science 2016, 463, 288-98.2016
Graphitic Biocarbon from Metal-Catalyzed Hydrothermal Carbonization of Lignin, Demir
Muslum; Kahveci, Zafer; Aksoy, Burak; Palapati, Naveen K. R.; Subramanian, Arunkumar; Cullinan, Harry T.; El-Kaderi, Hani M.; Harris, Charles T.; Gupta, Ram B., Industrial & Engineering Chemistry Research 2015, 54(43), 10731-10739.2015
Surfactant-Loaded Halloysite Clay Nanotube Dispersants for Crude Oil Spill Remediation
Nyankson, Emmanuel; Olasehinde, Owoseni; John, Vijay T.; Gupta, Ram B., Industrial & Engineering Chemistry Research 2015, 54(38), 9328-9341.2015
Soybean Lecithin as a Dispersant for Crude Oil Spills
Nyankson, Emmanuel; DeCuir, Matthew J.; Gupta, Ram B., ACS Sustainable Chemistry & Engineering 2015, 3(5), 920-931.2015
Release of Surfactant Cargo from Interfacially-Active Halloysite Clay Nanotubes for Oil Spill Remediation
Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Samantha J.; He, Jibao; McPherson, Gary L.; Bose, Arijit; Gupta, Ram B.; John, Vijay T., Langmuir 2014, 30(45), 13533-13541.2014
A Comparison of the Effectiveness of Solid and Solubilized Dioctyl Sodium Sulfosuccinate (DOSS) on Oil Dispersion Using the Baffled Flask Test, for Crude Oil Spill Applications
Nyankson, Emmanuel; Ober, Courtney A.; DeCuir, Matthew J.; Gupta, Ram B., Industrial & Engineering Chemistry Research 2014, 53, 11862-11872.2014
Nanotechnology in Solar and Biofuels
ACS Sustainable Chemistry & Engineering 2013, 1(7), 779-797.2013
Deoxy-liquefaction of switchgrass in supercritical water with calcium formate as an in-situ hydrogen donor
Ramsurn, Hema; Gupta, Ram B., Bioresource Technology 2013, 143, 575–583.2013
Special issue-10th International Symposium on Supercritical Fluids
King, Jerry W.; Gupta, Ram B.; Hutchenson, Keith W.; McHugh, Mark A.; Temelli, Feral, Journal of Supercritical Fluids 2013, 79, 1.2013
Conversion of the Acetone-Butanol-Ethanol (ABE) Mixture to Hydrocarbons by Catalytic Dehydration
Nahreen, Shaima; Gupta, Ram B., Energy & Fuels 2013, 27(4), 2116-2125.2013
Formation of itraconazole/L-malic acid cocrystals by gas antisolvent cocrystallization
Ober, Courtney A.; Montgomery, Stephen E.; Gupta, Ram B., Powder Technology 2013, 236, 122-131.2013
Preparation of rifampicin/lactose microparticle composites by a supercritical antisolvent-drug excipient mixing technique for inhalation delivery
Ober, Courtney A.; Kalombo, Lonji; Swai, Hulda; Gupta, Ram B., Powder Technology 2013, 236, 132-138.2013
Formation of Itraconazole-Succinic Acid Cocrystals by Gas Antisolvent Cocrystallization
Ober, Courtney A.; Gupta, Ram B., AAPS PharmSciTech (2012), 13(4), 1396-1406.2012
Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst
Suchithra Thangalazhy-Gopakumar, Sushil Adhikari, Shyamsundar Ayalur Chattanathan, Ram B. Gupta, Bioresource Technology 2012 118, 150-157.2012
Catalytic Pyrolysis of Biomass over H+ZSM-5 under Hydrogen Pressure
Thangalazhy-Gopakumar, Suchithra; Adhikari, Sushil; Gupta, Ram B., Energy & Fuels 2012 26(8), 5300-5306.2012
pH Control of Ionic Liquids with Carbon Dioxide and Water: 1-Ethyl-3-methylimidazolium Acetate
Ober, C.A., Gupta, R.B., Ind. Eng. Chem. Res. 2012 51 (6), 2505-2820.2012
Production of Biocrude from Biomass by Acidic Subcritical Water Followed by Alkaline Supercritical Water Two-Step Liquefaction
Ramsurn, H., Gupta, R.B., Energy & Fuels 2012 26 (4), 2365-2375.2012
Preparation of thalidomide nano-flakes by supercritical antisolvent with enhanced mass transfer
Jin, H., Hemingway, M., Gupta, R.B.; Xia, F., Zhao, Y., Particuology 2012 10 (1), 17-23.2012
Nanoparticle Technology for Drug Delivery
Ober, C.A., Gupta, R.B., Ide@s CONCYTEG 2011 6 (72), 719-731.2011
Production of hydrocarbon fuels from biomass using catalytic pyrolysis under helium and hydrogen environments
Thangalazhy-Gopakumar, S., Adhikari, S., Gupta, R.B., Tu, M., Taylor, S., Bioresource Technology 2011 102 (12), 6742-6749.2011
Single-step preparation and deagglomeration of itraconazole microflakes by supercritical antisolvent method for dissolution enhancement
Sathigari, S. K., Ober, C. A., Sanganwar, G.P., Gupta, R.B.; Babu, R.J., Journal of Pharmaceutical Sciences 2011 100 (7), 2952-2965.2011
30. Enhancement of Biochar Gasification in Alkali Hydrothermal Medium by Passivation of Inorganic Components Using Ca(OH)2
Ramsurn, H.,Kumar, S.,Gupta, R.B., Energy & Fuels 2011 25 (5), 2389-2398.2011
31. Hydrogen production from catalytic gasification of switchgrass biocrude in supercritical water
Byrd, A.J., Kumar, S., Kong, L., Ramsurn, H., Gupta, R.B., International Journal of Hydrogen Energy 2011 36 (5), 3426-3433.2011
Influence of Pyrolysis Operating Conditions on Bio-Oil Components: A Microscale Study in a Pyroprobe
Thangalazhy-Gopakumar, S., Adhikari, S., Gupta, R.B., Fernando, S.D., Energy & Fuels 2011 25 (3), 1191–1199.2011
Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres
Kumar, S., Kothari, U., Kong, L., Lee, Y. Y., Gupta, R.B., Biomass and Bioenergy 2011 35 (2), 956-968.2011
Hydrogel Nanopowder Production by Inverse-Miniemulsion Polymerization and Supercritical Drying
Hemingway, M.G., Gupta, R.B., Elton, D.J., Industrial & Engineering Chemistry Research 2010 49 (20), 10094-10099.2010
Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor
Thangalazhy-Gopakumar, S., Adhikari, S., Ravindran, H., Gupta, R.B., Fasina, O., Tu, M., Fernando, Sandun D., Bioresource Technology 2010 101 (21), 8389-8395.2010
Stability of cerium-modified .gamma.-alumina catalyst support in supercritical water
Byrd, A.J., Gupta, R.B., Applied Catalysis, A: General 2010 381 (1-2), 177-182.2010
Simultaneous production and co-mixing of microparticles of nevirapine with excipients by supercritical antisolvent method for dissolution enhancement
Sanganwar, G.P., Sathigari, S., Babu, R. J., Gupta, R.B., European Journal of Pharmaceutical Sciences 2010 39 (1-3), 164-174.2010
Cellulose pretreatment in subcritical water: Effect of temperature on molecular structure and enzymatic reactivity
Kumar, S., Gupta, R., Lee, Y. Y., Gupta, R.B., Bioresource Technology 2010 101 (4), 1337-1347.2010
Social