Saikat Pal

Assistant Professor

  • Newark NJ UNITED STATES

Saikat Pal studies human movement, musculoskeletal disorders, sports performance and robotic technology to improve mobility.

Contact

Spotlight

1 min

Enabling the disabled through technology

Technology represents new hope for people disabled by everything from cerebral palsy to injuries sustained in combat or car accidents, and NJIT’s Saikat Pal investigates the possibilities. At the university’s Life Sciences Motion Capture Lab, Pal fits disabled veterans with the latest exoskeletons, which get them upright again and moving across the room. All the while, Pal measures their range of motion to determine the strengths and weaknesses of the latest tech. Similarly, the biomedical engineer uses monitoring and recording equipment to measure the gaits of children with cerebral palsy. In short, he’s an expert on the limits of human movement, and how tech can extend those limits. And his experience is varied, having also worked as a research associate at Stanford University and biomedical engineering at the U.S. Department of Veterans Affairs. To interview Saikat, just click on the button below.

Saikat Pal

Social

Biography

Saikat Pal is an assistant professor of biomedical engineering and director of the Life Sciences Motion Capture Lab (LSMC), which studies human movement, musculoskeletal disorders, sports performance and robotic technology. The lab uses monitoring and recording equipment to measure the gaits of children with cerebral palsy, test robotic exoskeletons used by military veterans with spinal cord injuries and quantify the limits of human performance.

LSMC is part of the larger Computational Orthopaedics and Rehabilitation Engineering Lab that Pal directs.

Pal's research has been published in the Journal of Orthopaedic Research, Medical Physics and the Journal of Applied Biomechanics.

He is a member of the International Society of Biomechanics and Orthopaedics Research Society.

Before NJIT, he worked at Stanford University, as a research associate, the U.S. Department of Veteran Affairs, as a biomedical engineer, and California Polytechnic State University, as an assistant professor.

Areas of Expertise

Biomedical Engineering
Mobility Disorders
Human Movement
Robotic Technology
Mechanical Engineering
Musculoskeletal Disorders
Assistive Technologies
Biomechanics
Rehabiliation Robotics

Education

University of Denver

Ph.D.

Mechanical Engineering

2008

University of Denver

B.S.

Computer Engineering

2002

University of Denver

M.S.

Mechanical Engineering

2004

Languages

  • English
  • Hindi
  • Bengali

Articles

The role of cartilage stress in patellofemoral pain

Medicine and Science in Sports and Exercise

Thor F Besier, Saikat Pal, Christine E Draper, Michael Fredericson, Garry E Gold, Scott L Delp, Gary S Beaupré

2015

We used experimental data and computational modeling to determine whether patients with patellofemoral pain had elevated cartilage stress compared to pain-free controls and test the hypothesis that females exhibit greater cartilage stress than males. We created finite element models of 24 patients with patellofemoral pain (11 males; 13 females) and 16 pain-free controls (8 males; 8 females) to estimate peak patellar cartilage stress (strain energy density) during a stair climb activity. Simulations took into account cartilage morphology from MRI, joint posture from weight-bearing MRI, and muscle forces from an EMG-driven model.

View more

Patellofemoral cartilage stresses are most sensitive to variations in vastus medialis muscle forces

Computer Methods in Biomechanics and Biomedical Engineering

Saikat Pal, Thor F Besier, Garry E Gold, Michael Fredericson, Scott L Delp, Gary S Beaupre

2019

The purpose of this study was to evaluate the effects of variations in quadriceps muscle forces on patellofemoral stress. We created subject-specific finite element models for 21 individuals with chronic patellofemoral pain and 16 pain-free control subjects.

View more

Knee muscle co-contractions are greater in old compared to young adults during walking and stair use

Gait & Posture

Vishnu D Chandran, Jan A Calalo, Philippe C Dixon, Jack T Dennerlein, Jeffrey M Schiffman, Saikat Pal

2019

Muscle co-contraction is an accepted clinical measure to quantify the effects of aging on neuromuscular control and movement efficiency. However, evidence of increased muscle co-contraction in old compared to young adults remains inconclusive. Are there differences in lower-limb agonist/antagonist muscle co-contractions in young and old adults, and males and females, during walking and stair use?

View more

Show All +