Florida Tech’s Pallav Ray Seeks to Improve Accuracy of Rainfall Predictions During Monsoon Season

Component of Surface Energy Accounts for Factors Influencing Precipitation

Jan 25, 2025

3 min



Growing up in Kolkata, India, Pallav Ray recalls hot spring days leading up to summer’s monsoon season. Temperatures sat above 35 degrees Celsius (95 degrees Fahrenheit), rarely falling below that. When it rained, however, that’s when he could find relief – often by walking barefoot on the cool ground.


Now an associate professor of ocean engineering and marine sciences at Florida Tech, Ray studies tropical climate dynamics and their variability using observations, models and theory. His paper, “Rain‐Induced Surface Sensible Heat Flux Reduces Monsoonal Rainfall Over India,” was published in Geophysical Research Letters and highlights research he said was inspired by his childhood in India’s hot climate.


His research, funded by the National Oceanic and Atmospheric Administration (NOAA), found that including a variable that is often neglected by climate models could improve the accuracy of rainfall predictions. In turn, that could help agriculture industries better prepare for regional irrigation and flooding during monsoon season. Ray’s climate modeling research spans across the globe, from India, to Chicago, Ill., and most recently the Indo-Pacific Maritime Continent archipelago, which includes countries such as Indonesia and New Guinea.


The variable, notated as “Qp,” represents precipitation-induced sensible heat flux, which is a component of surface energy that influences precipitation. It essentially accounts for how precipitation cools land surface temperatures. Qp is calculated using a formula accounting for the specific heat of rainwater, density of rainwater, the rate of rain, surface temperature and the temperature of raindrops when they hit the surface.



This variable is important, Ray explained, because the temperature of raindrops is typically cooler than the temperature of the surface, so when it rains, the surface cools down.


During monsoon season, land is warm and the ocean is cooler, which pushes moist air from the ocean to the land. The higher the temperature difference between the land and the ocean, the stronger the monsoon because it brings more moisture, Ray explained.


In testing Qp, Ray and his team of researchers ran simulations investigating the variable’s role on precipitation. They found that when incorporating it, not only is anticipated precipitation reduced by up to 5% – which he says is a significant reduction – but the models also reflect changes in the spatial distribution of precipitation.


“The moment we include that term, it cools down the surface, land surface. The temperature difference is smaller between the land and the ocean,” Ray said. “That reduces the overall precipitation overland because now less moisture is coming from the ocean.”


In India, Ray explained, most models, overestimate precipitation. His results generated predictions that were much closer to observed rainfall.


He says that inclusion of this variable in common climate models could influence India’s regional agriculture and irrigation strategies. According to Ray, rainfall is closely tied to the India’s industries, especially agriculture.


He said the variable may have the greatest impact on seasonal rainfall predictions, which happen months in advance and determine how the country approaches its agricultural practices. Policymakers rely on seasonal rainfall predictions to anticipate and plan for summer monsoons, and the money allocated to deal with excess rainfall is “tremendous,” he said.


“If you can do a seasonal prediction a few months in advance and your precipitation actually changed by 5%, it’ll change whether you’ll have an excess year versus you’ll have a deficit year,” Ray said. “I think that’s where the main, major impact is.”


In his future research, Ray would like to explore how Qp would impact climate models over urban areas here in Florida.


If you're interested in learning more about predicting monsoons and the other fascinating research  Pallav Ray is doing at Florida Tech   - simply contact  Adam Lowenstein, Director of Media Communications at Florida Institute of Technology at adam@fit.edu to arrange an interview today.

You might also like...

Check out some other posts from Florida Tech

5 min

Research Below the Surface

The roots of scuba diving lie in exploration. But in an age when advanced instruments can drive research, too, why not stay dry on land? Researchers have used scuba diving as a tool for decades, but as technology evolves, remotely operated vehicles (ROVs) can aid, and sometimes replace, divers in the research process. Still, argues Stephen Wood, no existing tools have the full capability of a human. The professor of ocean engineering says the ability to grab items or quickly turn one’s head is difficult to replicate in an ROV. He also argues that although robots can collect and send data, the ability to assess and interpret an environment through a human lens is essential. “The human cannot leave” the research, Wood says. The American Academy of Underwater Sciences (AAUS) defines scientific diving as “diving performed solely as a necessary part of a scientific, research, or educational activity by employees whose sole purpose for diving is to perform scientific research tasks.” With more than 140 organizational members, AAUS supports diving as a research tool and protects scientific divers’ health and safety. Researchers and students must obtain an AAUS certification, which Florida Tech offers, before undertaking a scientific dive. At Florida Tech, any diver who plans to use compressed air or air blends for activity involving teaching or research must comply with AAUS. Robert van Woesik, professor of marine sciences, studies the dynamics of coral reefs worldwide. He and his students scuba dive to examine and photograph coral assemblages, then return with information they can use to predict the impact of local and global disturbances, recovery from disturbances and future growth. The ability to personally identify different species underwater is crucial to understanding coral reef dynamics. He says that without scuba, the necessary training to develop that skill falls away. “I think it’s still worthwhile knowing the species composition of a reef underwater instead of just saying, ‘Okay, we don’t need scuba divers anymore. We just need photographs and ROVs,’” van Woesik says. He learns the most when he can descend to a reef and see the seascape himself. “I think there’s something to be said to just go in the water and ask some questions,” van Woesik says. “That’s the valuable part of being able to scuba dive, getting amongst it to experience the reef, in tandem with analyzing photographs from around the world on the computer.” Assistant professor of marine sciences Austin Fox says in his research in the Indian River Lagoon, diving is essential for operating—and sometimes finding—instruments. “We spend a lot of time trying to figure out ways to do this stuff without diving…but there’s just no replacement for it.” Austin fox, Assistant professor of marine sciences Scientific diving has taken Florida Tech researchers across the globe, from the murky floor of the Indian River Lagoon to the depths of Antarctica’s McMurdo Sound. Rich Aronson, department head and professor of ocean engineering and marine sciences, studies coral reefs in the tropics and subtidal communities in Antarctica. In 1997, he had the opportunity to visit the McMurdo Station to study invertebrate ecology—specifically, who eats what and whether they leave traces of their predatory activity on the shells of their prey. There, he completed 27 dives of up to 130 feet deep. Some were done through ice-cracks in remote areas, he recalls, whereas others were from holes drilled through 10 feet of sea-ice. He noted that the time to prepare for these dives was extensive—two 30-minute dives took eight hours—and they weren’t without risk. “That was the first and only time I’ve dived under the ice. It’s dangerous because there’s a ceiling above you,” Aronson says. “You jump in the hole and try not to screw it up because if you screw it up, you’re dead.” Though risky, Aronson says scuba diving was crucial to the research. He argues that neither ROVs nor oceanographic sensors could have collected or sampled organisms at fine scales, run transects and made behavioral observations like a human could. Additionally, he says his observations at depth, such as the “sting of subzero water” on his face and “the slowness of reaction of the animals living down there,” are what later inspired a project of his combining deep-sea oceanography and paleontology to project the future of Antarctic seafloor communities in a rapidly warming world. “Science is a lot more subjective than you might think, and feeling the environment helps you understand it.” Richard Aronson, department head and professor of marine sciences The risky nature of scuba diving is why programs like AAUS exist: to standardize safe and responsible diving practices for conducting scientific research. Divers are at risk for a number of pressure-related injuries, such as decompression sickness: a condition in which residual nitrogen can create bubbles in the blood and body tissue upon ascent if the diver rises to the surface too fast. To reduce their risk, divers must plan and track how deep they are going, the time at which they are that depth (and subsequent depths) and how long they need to wait before changing depth. Technology has also evolved since the beginning of scuba to support divers’ safety further. Digital dive computers, developed in the 1980s, help divers estimate how long they can stay at their current depth while underwater (among other things). Additionally, Enriched Air Nitrox (Nitrox) is a gas mixture that contains a higher percentage of oxygen than standard air. Divers who use Nitrox can extend their time at depth and reduce their risk of decompression sickness because of its reduced nitrogen pressure. Van Woesik predicts that dive technology will keep evolving. He imagines there could soon be a system that allows divers to upload data at depth, and a system that aids in species identification without having to decipher an image at the surface. He also believes that innovators will keep working to reduce hazards and prioritize safety, because despite the risks, divers will always get in the water. “Hopefully that technology will get better so we can go deeper, safer, and so we can stay down a bit longer to explore and further understand the natural wonders of the oceans,” van Woesik says. If you're interested in connecting with Stephen Wood, Austin Fox, Richard Aronson or Robert van Woesik - simply contact Adam Lowenstein, Director of Media Communications at Florida Institute of Technology at adam@fit.edu to arrange an interview today.

2 min

Meet an Expert: Adrian Peter

Name: Adrian Peter Title: Associate professor of mathematics and systems engineering and electrical engineering and computer science (joint appointment); director, Center for Advanced Data Analytics and Systems (CADAS) Department/College: Department of Mathematics and Systems Engineering and Department of Electrical Engineering and Computer Science/College of Engineering and Science Current research funding: $2.19 million General research focus: Our Multi-domain, Multi-sensor, Cyber-physical Tactical Exploitation (M2CTE) project addresses a critical need for a robust analytic processing framework capable of supporting autonomous sensing and analytics on the edge – where devices and sensors collect data – with the ability to reach back to the cloud for more improvement. Adrian Peter's  research interests are in applying advanced analytics (e.g. machine learning, statistical modeling, optimization and visualization) to solve large-scale computing problems across a variety of domain areas (signal processing, geospatial, environmental, sensor fusion and enterprise intelligence). Q: What has you excited about your current research? We have built our entire infrastructure with the immensely talented graduate and undergraduate students at Florida Tech. Their tireless efforts have led to us delivering practical and operational real-world, machine-learning solutions that make us among the global leaders in machine learning at the edge. Q: Why is it important to conduct research? The objective of all research is to advance the frontiers of knowledge in a specific discipline. In my research, we are continually pushing state-of-the-art distributed sensing and edge analytics. Our results have helped transition conceptual ideas and customer requirements into operational solutions that improve situational awareness at tactical edge. Adrian Peter is available to speak with media. Contact Adam Lowenstein, Director of Media Communications at Florida Institute of Technology, at adam@fit.edu to arrange an interview today.

2 min

Meet an Expert: Linxia Gu

Name: Linxia Gu Title: Professor of biomedical engineering and science, department head Department/college: Department of Biomedical Engineering and Science/College of Engineering and Science Current research funding: $5 million as co-PI of ASCEND General research focus: My research focuses on developing physically based computational models and conducting mechanical testing to investigate how mechanical stimuli influence cell and tissue responses, providing new insights into the interplay between mechanics and biology. Dr. Gu’s research expertise lies in the biomechanics and biomaterials using both computational and experimental methods. The specific application areas include vascular mechanics and indirect traumatic injury to the brain and eye. Her group is particularly interested in developing multi-scale multi-physics models to study and exploit tissue responses and cellular mechanotransduction, and to gain new mechanistic insights into the interplay of mechanics and human body. The multidisciplinary effort has resulted in > 130 journal papers, and $11 million research funding from NIH, NSF, ARO, and NASA. Q: What has you excited about your current research? The opportunity to bridge the gap between mechanics and biology drives my research. By integrating computational models with experimental data, we are uncovering how mechanical forces influence tissue and cellular responses, particularly in the areas of vascular stenting and traumatic injury to the eye and brain. This had the potential to drive breakthroughs in understanding, prevention and treatment. Q: Why is it important to conduct research? Conducting research is vital for addressing pressing societal challenges and advancing our understanding of complex biomedical systems. Linxia Gu is available to speak with media. Contact Adam Lowenstein, Director of Media Communications at Florida Institute of Technology, at adam@fit.edu to arrange an interview today.

View all posts