Babies respond positively to smell of foods experienced in the womb according to study co-led at Aston University

Feb 13, 2025

4 min

Jackie Blissett


  • Babies whose mothers took kale or carrot capsules when pregnant responded more favourably to these smells
  • The research shows that the process of developing food preferences begins in the womb, much earlier than previously thought
  • The research follows up on an earlier study


Babies show positive responses to the smell of foods they were exposed to in the womb after they are born, according to a new study.


The findings, led by Durham University, UK, could have implications for understanding how healthy eating habits might be established in babies during pregnancy. The research included scientists from Aston University, UK, and the Centre national de la recherche scientifique (CNRS) and University of Burgundy, France. It is published in the journal Appetite.


Researchers analysed the facial expressions of babies who had been repeatedly exposed to either kale or carrot in the womb after birth. Newborns whose mothers had taken carrot powder capsules when pregnant were more likely to react favourably to the smell of carrot. Likewise, babies whose mothers had taken kale powder capsules while pregnant reacted more positively to the kale scent.


Research co-lead author and supervisor Professor Nadja Reissland, of the Fetal and Neonatal Research Lab, Department of Psychology, Durham University, said:


“Our analysis of the babies’ facial expressions suggests that they appear to react more favourably towards the smell of foods their mothers ate during the last months of pregnancy. Potentially this means we could encourage babies to react more positively towards green vegetables, for example, by exposing them to these foods during pregnancy.


“In that respect, the memory of food the mother consumes during pregnancy appears to establish a preference for those smells and potentially could help to establish healthy eating habits at a young age.”


This study is a follow-up to a 2022 research paper where the researchers used 4D ultrasound scans at 32 and 36 gestational weeks to study foetal facial expressions after their pregnant mothers had ingested a single dose of either 400mg of carrot or kale capsules. Foetuses exposed to carrot showed more “laughter-face” responses while those exposed to kale showed more “cry-face” responses.


For the latest study, the researchers followed up 32 babies from the original research paper – 16 males and 16 females – from 36 weeks gestation until approximately three weeks after birth.


Mothers consumed either carrot or kale capsules every day for three consecutive weeks until birth. When the babies were about three weeks old, the research team tested newborns’ reactions to kale, carrot, and a control odour.


Separate wet cotton swabs dipped in either carrot or kale powders, or water as the control, were held under each infant’s nose and their reaction to the different smells was captured on video. The babies did not taste the swabs. Scientists then analysed the footage to see how the newborns reacted and compared these reactions with those seen before the babies were born to understand the effects of repeated flavour exposure in the last trimester of pregnancy.


The research team found that, from the foetal to newborn period, there was an increased frequency in “laughter-face” responses and a decreased frequency in “cry-face” responses to the smell the babies had experienced before birth.


Humans experience flavour through a combination of taste and smell. In foetuses, this happens through inhaling and swallowing the amniotic fluid in the womb.


Research co-lead author Dr Beyza Ustun-Elayan carried out the research while doing her PhD at Durham University.


Dr Ustun-Elayan, who is now based at the University of Cambridge, said:


“Our research showed that foetuses can not only sense and distinguish different flavours in the womb but also start learning and establish memory for certain flavours if exposed to them repeatedly. This shows that the process of developing food preferences begins much earlier than we thought, right from the womb. By introducing these flavours early on, we might be able to shape healthier eating habits in children from the start.”


The researchers stress that their findings are a baseline study only. They say that longer follow-up studies are needed to understand long-term impacts on child eating behaviour. They add that further research would also need to be carried out on a larger group of infants, at different points in time.


They say that the absence of a control group not exposed to specific flavours makes it challenging to fully disentangle developmental changes in the babies from the effects of repeated flavour exposure. Future research should also factor in post-birth flavour experiences, such as some milk formulas known to have a bitter taste, which could impact babies’ responses to the smell of bitter and non-bitter vegetables.


The research involved the children of white British mothers, and the researchers say that future studies should be widened to explore how different cultural dietary practices might influence foetal receptivity to a broader array of flavours.


Research co-author Professor Jackie Blissett, at Aston University’s School of Psychology, said:


“These findings add to the weight of evidence that suggests that flavours of foods eaten by mothers during late pregnancy are learnt by the foetus, preparing them for the flavours they are likely to experience in postnatal life.”


Research co-author Professor Benoist Schaal, National Centre for Scientific Research (CNRS)-University of Burgundy, France said:


“Foetuses not only detect minute amounts of all types of flavours the mothers ingest, but they overtly react to them and remember them while in the womb and then after birth for quite long times. In this way, mothers have an earlier than early teaching role, as the providers of the infant’s first odour or flavour memories.”


Visit https://doi.org/10.1016/j.appet.2025.107891 to read the full research paper in Appetite.

Connect with:
Jackie Blissett

Jackie Blissett

Professor of Psychology

Professor Blissett has a interest in children’s fussy eating including poor fruit and vegetable acceptance, emotional eating, and obesity.

Feeding and Eating BehaviourPsychologyChildhood Eating BehaviourFussy EatingDevelopmental Psychology

You might also like...

Check out some other posts from Aston University

3 min

Aston University’s Professor Ian Maidment receives prestigious National Institute for Health and Care Research award

Professor Ian Maidment has received a National Institute for Health and Care Research (NIHR) Senior Investigator Award The award recognises his outstanding leadership contributions to the work of the NIHR and his excellent track record of securing NIHR funding Professor Maidment is the first academic at Aston University to receive the honour. Professor Ian Maidment at Aston Pharmacy School has received a prestigious Senior Investigator Award from the National Institute for Health and Care Research (NIHR). The NIHR gives the award to researchers in recognition of outstanding leadership contributions to the work of the NIHR and an excellent track record of securing NIHR funding. As a senior investigator, Professor Maidment will act as an ambassador for NIHR, and help to guide strategy and tackle challenges in the health and social care landscape. He will join the NIHR College of around 200 senior investigators. Professor Maidment is the first academic at Aston University to receive the award and one of few pharmacists in the UK to receive such an award. Professor Maidment joined Aston University in 2012 as a senior lecturer, which marked his first step into academia after more than 20 years working in the NHS, both as a pharmacist and leading R&D. During his time in the NHS, he published 40 papers in peer-reviewed journals. These formed the basis of a PhD by previous publication, and Professor Maidment was the first person to obtain a PhD at Aston University by this route. He was promoted to reader in 2018 and a full chair in 2022. Professor Maidment specialises in the health care of older people and those with mental health conditions, and the use of medication to treat them. This includes projects investigating the long-standing and international healthcare priority of managing anti-psychotic weight gain. From this research project, guidance will be developed both for patients and practitioners. His research with older people has identified the need to focus on reducing medication burden and investigating the link between some medications and dementia. He also studies how to best use the expertise of community pharmacy to improve outcomes, for example in COVID vaccination and more recently how to make independent prescribing by community pharmacy work better; the importance of this issue was identified by UK Prime Minister Keir Starmer. The award also recognises Professor Maidment’s strong links with the NIHR and critically his continued role in supporting its work. This includes mentoring other researchers, leadership and contributing to the development of the NIHR. Professor Maidment said: “Optimising medication in the real world is a key research priority; about half of all people struggle with adherence to medication. Much of my research has been focused on bringing the patient voice to key research questions. If we can fully understand the patient and family carer view, then we can start to get the medication right.” Professor Anthony Hilton, Aston University pro-vice-chancellor and executive dean of the College of Health and Life Sciences, said: “Professor Ian Maidment’s NIHR Senior Investigator Award is a well-deserved recognition of his exceptional research in medication safety and the care of older adults and people with severe mental illness, such as schizophrenia. His work has not only advanced academic understanding but has also shaped real-world healthcare practices, improving outcomes for patients. “This achievement reflects his dedication, expertise and commitment to impactful research and his outstanding leadership contributions to the work of the NIHR. At Aston University, we are delighted to celebrate Ian’s success and the significant contribution he continues to make to the field.”

4 min

Aston University study reveals the illusion of ‘dazzle’ paint on World War I battleships

The Zealandia in wartime dazzle paint. Image: Australian National Maritime Museum on The Commons Geometric ‘dazzle’ camouflage was used on ships in WWI to confuse enemy onlookers as to the direction and speed of the ship Timothy Meese and Samantha Strong reanalysed historic data from 1919 and found that the ‘horizon effect’ is more effective for confusion When viewing a ship at distance, it often appears to be travelling along the horizon, regardless of its actual direction of travel – this is the ‘horizon effect’. A new analysis of 105-year-old data on the effectiveness of ‘dazzle’ camouflage on battleships in World War I by Aston University researchers Professor Tim Meese and Dr Samantha Strong has found that while dazzle had some effect, the ‘horizon effect’ had far more influence when it came to confusing the enemy. During World War I, navies experimented with painting ships with ‘dazzle’ camouflage – geometric shapes and stripes – in an attempt to confuse U-boat captains as to the speed and direction of travel of the ships and make them harder to attack. The separate ‘horizon effect’ is when a person looks at a ship in the distance, and it appears to be travelling along the horizon, regardless of its actual direction of travel. Ships travelling at an angle of up to 25° relative to the horizon appear to be travelling directly along it. Even with those at a greater angle to the horizon, onlookers significantly underestimate the angle. Despite widespread use of dazzle camouflage, it was not until 1919 that a proper, quantitative study was carried out, by MIT naval architecture and marine engineering student Leo Blodgett for his degree thesis. He painted model ships in dazzle patterns and placed them in a mechanical test theatre with a periscope, like those used by U-boat captains, to measure how much onlookers’ estimations of the ships’ direction of travel deviated from their actual direction of travel. Professor Meese and Dr Strong realised that while the data collected by Blodgett was useful, his methods of experimental design fell short of modern standards. He’d found that dazzle camouflage worked, but the Aston University team suspected that dazzle alone was not responsible for the results seen, cleaned the data and designed new analysis to better understand what it really shows. Dr Strong, a senior lecturer at Aston University’s School of Optometry, said: “It's necessary to have a control condition to draw firm conclusions, and Blodgett's report of his own control was too vague to be useful. We ran our own version of the experiment using photographs from his thesis and compared the results across the original dazzle camouflage versions and versions with the camouflage edited out. Our experiment worked well. Both types of ships produced the horizon effect, but the dazzle imposed an additional twist.” If the errors made by the onlookers in the perceived direction of travel of the ship were entirely due to the ‘twist’ on perspective caused by dazzle paintwork, the bow, or front, of the ship, would always be seen to twist away from its true direction. However, Professor Meese and Dr Strong instead showed that when the true direction was pointing away from the observer, the bow was often perceived to twist towards the observer instead. Their detailed analysis showed a small effect of twist from the dazzle camouflage but a much larger one from the horizon effect. Sometimes these effects were in competition, sometimes in harmony. Professor Meese, a professor of vision science at the School of Optometry, said: “We knew already about the twist and horizon effects from contemporary computer-based work with colleagues at Abertay University. The remarkable finding here is that these same two effects, in similar proportions, are clearly evident in participants familiar with the art of camouflage deception, including a lieutenant in a European navy. This adds considerable credibility to our earlier conclusions by showing that the horizon effect – which has nothing to do with dazzle – was not overcome by those best placed to know better. “This is a clear case where visual perception is more powerful than knowledge. In fact, back in the dazzle days, the horizon effect was not identified at all, and Blodgett's measurements of perceptual bias were attributed entirely to the camouflage, deceiving the deceivers.” Professor Meese and Dr Strong say that more work is required to fully understand how dazzle might have increased perceptual uncertainty of direction and speed but also the geometry behind torpedo-aiming tactics that might have supported some countermeasures. Visit https://doi.org/10.1177/20416695241312316 to read the full paper in i-Perception.

1 min

Lab grown meat could be on sale in UK within two years - but what is lab-grown meat?

Meat, dairy and sugar grown in a lab could be on sale in the UK for human consumption for the first time within two years, sooner than expected. The Food Standards Agency (FSA) is looking at how it can speed up the approval process for lab-grown foods. Such products are grown from cells in small chemical plants. UK firms have led the way in the field scientifically but feel they have been held back by the current regulations. Aston University has been working on cultivated meat - find out more about what lab-made meat is  made of and how it is created in the podcast Breaking Down Barriers on Spotify   https://open.spotify.com/episode/7bFy1gr2LJCwiRLPAT9Hml For further details contact Nicola Jones, Press and Communications Manager, on (+44) 7825 342091 or email: n.jones6@aston.ac.uk

View all posts