Aston University collaboration to develop injectable paste which could treat bone cancer

Feb 18, 2025

4 min

Professor Richard Martin
  • A £110k grant from Orthopaedic Research UK is to help to conduct the work
  • Study is a collaboration with The Royal Orthopaedic Hospital
  • Researchers to use gallium-doped bioglass to produce a substance with anticancer and bone regenerative properties.


              Professor Richard Martin



Aston University is collaborating in research to develop an injectable paste which could treat bone cancer.


The Royal Orthopaedic Hospital has secured a £110,000 grant from Orthopaedic Research UK to conduct the work. The project will see researchers at the hospital and the University use gallium-doped bioglass to produce a substance with anticancer and bone regenerative properties. If proved effective it could be used to treat patients with primary and metastatic cancer.


Gallium is a metallic element that when combined with bioactive glass can kill cancerous cells that remain when a tumour is removed. It also accelerates the regeneration of the bone and prevents bacterial contamination. A recent study led by Aston University found that bioactive glasses doped with the metal have a 99 percent success rate of eliminating cancerous cells.


Dr Lucas Souza, research lab manager at the hospital’s Dubrowsky Lab is leading the project. He said : “Advances in treatment of bone cancer have reached a plateau over the past 40 years, in part due to a lack of research studies into treatments and the complexity and challenges that come with treating bone tumours. Innovative and effective therapeutic approaches are needed, and this grant provides vital funds for us to continue our research into the use of gallium-doped bioglass in the treatment of bone cancer.”


Professor Richard Martin who is based in Aston University’s College of Engineering and Physical Sciences added: “The injectable paste will function as a drug delivery system for localised delivery of anticancer gallium ions and bisphosphonates whilst regenerating bone. Our hypothesis is that this will promote rapid bone formation and will prevent cancer recurrence by killing residual cancer cells and regulating local osteoclastic activity.”


It is hoped the new approach will be particularly useful in reducing cancer recurrence and implant site infections. It is also thought that it will reduce implant failure rates in cases of bone tumours where large resections for complete tumour removal is either not possible, or not recommended. This could include incidents when growths are located too close to vital organs or when major surgery will inflict more harm than benefit. It could also be used in combination with minimally invasive treatments such as cryoablation or radiofrequency ablation to manage metastatic bone lesions.


Dr Souza added: “The proposed biomaterial has the potential to drastically improve treatment outcomes of bone tumour patients by reducing cancer recurrence, implant-site infection rates, and implant failure rates leading to reduced time in hospital beds, less use of antibiotics, and fewer revision surgeries. Taken together, these benefits could improve survival rates, functionality and quality of life of bone cancer patients.”


Other members of the team include the hospital’s Professor Adrian Gardner, director of research and development and Mr Jonathan Stevenson, orthopaedic oncology and arthroplasty consultant, Dr Eirini Theodosiou from Aston University and Professor Joao Lopes from the Brazilian Aeronautics Institute of Technology.


ENDS


About the Royal Orthopaedic Hospital NHS Foundation Trust

The Royal Orthopaedic Hospital NHS Foundation Trust is one of the largest specialist orthopaedic units in Europe, offering planned orthopaedic surgery to people locally, nationally, and internationally.

The Trust is an accredited Veteran Aware organisation and a Disability Confident Leader. Ranked 8th in the 2024 UK Inclusive Top 50 Employers list, the Royal Orthopaedic Hospital is the highest-ranking NHS organisation for its commitment to diversity and inclusion.

The Royal Orthopaedic Hospital has a vibrant research portfolio of clinical trials, observational studies and laboratory studies exploring new treatment options, new approaches in rehabilitation and therapy, and new medical devices. This research is delivered by our researchers and clinicians spread across the Knowledge Hub, our home for education and research, and the Dubrowsky Regenerative Medicine Laboratory, a state-of-the-art lab opened in 2019.


About Aston University

For over a century, Aston University’s enduring purpose has been to make our world a better place through education, research and innovation, by enabling our students to succeed in work and life, and by supporting our communities to thrive economically, socially and culturally.

Aston University’s history has been intertwined with the history of Birmingham, a remarkable city that once was the heartland of the Industrial Revolution and the manufacturing powerhouse of the world.

Born out of the First Industrial Revolution, Aston University has a proud and distinct heritage dating back to our formation as the School of Metallurgy in 1875, the first UK College of Technology in 1951, gaining university status by Royal Charter in 1966, and becoming The Guardian University of the Year in 2020.

Building on our outstanding past, we are now defining our place and role in the Fourth Industrial Revolution (and beyond) within a rapidly changing world.

For media inquiries in relation to this release, contact Nicola Jones, Press & Communications Manager on 07941194168 or email: n.jones6@aston.ac.uk


Connect with:
Professor Richard Martin

Professor Richard Martin

Reader, Electrical, Electronic & Power Eng, Aston Institute of Materials Research (AIMR)

Dr Martin's research interests include bioactive glass and structural studies.

Advanced ImagingStructural StudiesBioactive GlassGlassNeutron Scattering

You might also like...

Check out some other posts from Aston University

2 min

Aston University researchers to take the first steps to find out if AI can help policymakers make urban mobility more sustainable

Researchers to explore how AI can help urban mobility planners They are to investigate AI-driven policy tools’ potential to create greener cities Project to benefit from expertise of five European universities. A European group of researchers led by Aston University is taking the first steps to explore how AI can help urban mobility planners. As city populations grow causing strain on resources, the experts are to investigate AI-driven policy tools’ potential to create greener cities. The team have received £10,000 in funding from the British Academy which they hope will set them on the road to further research. Taking part in the project will be experts from University College London, Ruralis University in Norway, the University of Turin, Italy and Lisbon University Institute, Portugal. Dr Dalila Ribaudo from the Centre for Business Prosperity at Aston Business School and Dr Alina Patelli from the Aston Centre for Artificial Intelligence Research and Application will co-lead a UK-EU consortium consolidation project. The interdisciplinary project will benefit from expertise in applied business and specialist insight into global economics, policymaking and urban transport planning. Dr Patelli said “Policymakers and society could all benefit from our research into innovative ways of managing the strain on urban infrastructures and resources. "The AI-powered policy tools we are developing are meant to support decision managers at all levels of urban governance with reducing emissions, optimising transportation as well as predicting and preventing environmental hazards. Such changes would improve the quality of life for the millions of people living in towns and cities across the UK, Europe and, in the long term, the entire world.” Following the successful bid for the British Academy pump priming grant the team will apply for Horizon Europe funding to continue developing impactful AI-driven policy tools for greener cities.

3 min

New Aston University spin-out company will develop novel ways to treat non-healing wounds

EVolution Therapeutics (EVo) has been founded on the work of Professor Andrew Devitt into the causes of inflammatory disease A failure to control inflammation in the body, usually a natural defence mechanism, can cause chronic inflammation, such as non-healing wounds Non-healing wounds cost the NHS £5.6bn annually, so there is a vital need for new treatments. Aston University’s Professor Andrew Devitt, Dr Ivana Milic and Dr James Gavin have launched a new spin-out company to develop revolutionary treatments to treat chronic inflammation in patients. One of the most common inflammatory conditions is non-healing wounds, such as diabetic foot ulcers, which cost the NHS £5.6bn annually, the same cost as managing obesity. Such wounds are generally just dressed, but clinicians say there is a vital need for active wound treatments, rather than passive management. The spin-out, Evolution Therapeutics (EVo), will aim to create these vital active treatments. Inflammation in the human body helps to fight infection and repair damage following injury and occurs when the immune system floods the area with immune cells. Normally, this inflammation subsides as the damage heals, with the immune system signalling to the immune cells to leave. However, in some cases, the usual healing mechanism is not triggered and the inflammatory response is not turned off, leading to chronic inflammation and so-called inflammatory diseases. EVo is based on Professor Devitt’s work on dying cells in the body, known as apoptotic cells, and how they contribute to health. Dying cells release small, membrane-enclosed fragments called extracellular vesicles (EVs), which alert the immune system to the death of cells, and then trigger the body’s natural repair mechanism and remove the dead cells. It is estimated that 1m cells die every second. Professor Devitt and his team have identified the molecules within the EVs which control the healing process and are engineering new EVs loaded with novel healing enzymes, to drive the body’s repair responses to actively heal wounds. Much of the research has been funded by the Biotechnology and Biological Sciences Research Council (BBSRC) with additional support from the Dunhill Medical Trust. Professor Devitt, Dr Milic and Dr Gavin received Innovation-to-Commercialisation of University Research (ICURe) follow-on funding of £284,000 to develop the vesicle-based therapy with EVo. Most recently, in December 2023, Professor Devitt and Dr Milic were awarded £585,000 from the BBSRC Super Follow-on-Fund to develop engineered cells as a source of membrane vesicles carrying inflammation controlling cargo. The team, together with Professor Paul Topham, also received funding from the National Engineering Biology Programme (£237,000) to support polymer delivery systems for vesicles. EVo is one of the 12 projects being supported by SPARK The Midlands, a network which aims to bridge the gap between medical research discoveries of novel therapeutics, medical devices and diagnostics, and real-world clinical use. SPARK The Midlands is hosted at Aston University, supported by the West Midlands Health Tech Innovation Accelerator (WMHTIA), and was launched at an event on 31 January 2024. Professor Devitt, EVo chief technical officer, said: “Inflammation is the major driver of almost all disease with a huge contribution to those unwelcome consequences of ageing. We are now at a most exciting time in our science where we can harness all the learning from our research to develop targeted and active therapies for these chronic inflammatory conditions.” Dr Gavin, EVo CEO, said: “The chronic inflammation that results in non-healing wounds are a huge health burden to individuals affecting quality of life as we age but also to the economy. Our approach at EVo is to target the burden of non-healing wounds directly to provide completely novel approaches to wound care treatment. By developing a therapy which actively accelerates wound healing, we hope to drastically improve quality of life for patients, whilst reducing the high cost attached to long term treatment for healthcare systems worldwide.”

4 min

“Females are not autistic enough”: Aston University academic hosts talk on new book exploring female autism

Professor Gina Rippon signs a copy of The Lost Girls of Autism for talk attendee Dr Georgie Agar Professor Gina Rippon’s new book, The Lost Girls of Autism, investigates why autism was thought to be a male condition for so long She gave a public talk at Aston University on 6 May 2025 exploring the central themes of the book Women and girls with autism have long been overlooked as they are better at masking and camouflaging so ‘fail’ standard tests. Autism in women and girls has been overlooked for decades, and Gina Rippon, professor emeritus of cognitive neuroimaging at Aston University Institute of Health and Neurodevelopment (IHN), has given a talk about her new book on the topic at Aston University. The book, The Lost Girls of Autism, was released on 3 April 2025, coinciding with Autism Acceptance Month, with the subtitle ‘How Science Failed Autistic Women and the New Research that’s Changing the Story’. Autism is characterised by a number of now well-known traits, including social awkwardness, extreme obsessions, and unusual movements and coping mechanisms known as ‘stimming’. It was (allegedly) first described in the 1940s separately by Austrian psychiatrists Leo Kanner and Hans Asperger. Originally identified as a rare developmental condition, since the 1980s, there has been an 800% increase in diagnoses, leading to concerns about an ‘autism epidemic’. There is a strong and enduring belief that it is a condition much more prevalent in males. Professor Rippon described her research as “looking at how brains get to be different and what that means for the owners of those brains”. This includes looking at the functions of different areas of the brain using scanners. During research into a number of brain conditions and diseases with obvious differences between the sexes, including how the disease progresses, such as Alzheimer’s in women, or prevalence in one particular sex, such as Parkinson’s in men, Professor Rippon also became interested in autism, also assumed to be largely a condition in males. However, during a research review, she found that many autism studies made no reference to sex differences. Amalgamated data from autism studies found that 80% of participants were male, and 25% of testing centres only tested males with autism. By only looking at males, Professor Rippon explained, the notion that autism is a male disorder became self-fulfilling. This does not just refer to scientific research. Even now, boys are ten times more likely to be referred for assessment for autism and twice as likely to be diagnosed than girls, even when they have exactly the same traits. 80% of autistic females have received multiple wrong diagnoses, including borderline personality disorder, social anxiety or obsessive-compulsive disorder (OCD). But why? The reason is the unchallenged belief that ‘autism is a “boy” thing’ causing a male spotlight problem in all aspects of the autism story. It could also be that females with autism express the condition differently. Professor Rippon said: “This took me back to [my previous book] The Gendered Brain when I was looking at the very clear view of what males should be like and what females should be like. If you look at the autistic population you have this clear idea that males are like this, but females, er, not so much? Females have poor social skills, but not as poor, or obsessive interests, but not as obsessive, so the trouble with females, is that they are not autistic enough.” The gold standard tests for autism are the Autism Diagnostic Observation Schedule (ADOS) and the Autism Diagnostic Interview (ADI) tests. Professor Rippon believes these are heavily biased towards how the condition manifests itself in males, such as social awkwardness or extreme obsessions. For example, parents may well be asked if their son has an unusual interest in weather patterns or train timetables, but they are not asked if their daughter has an unusual interest in Barbie dolls, because dolls are seen as socially acceptable. Research has shown that females with autism are more likely to ‘camouflage’ their symptoms, watching how ‘normal people’ behave, even practising social interactions, so they appear more normal. They are also more likely to ‘mask’ symptoms behind a persona, such as the ‘class clown’ or ‘star athlete’, in an effort to fit in. Autistic females describe this behaviour as a ‘survival strategy’ to avoid being spotted as different. It is also the case that girls are more likely to have sensory processing problems, such as aversion to strong smells, which can be enough to affect their day-to-day lives. This has only recently been added to the diagnostic criteria for autism. If the camouflaging or masking collapses, rates of other conditions such as disordered eating or anorexia, self-harm and gender dysphoria are disproportionately high, and it is these which will become identified as the underlying difficulty, rather than autism itself. Professor Rippon said: “The next stage should be asking why this group of individuals persists in hiding their autism, especially when autism has been defined as a lack of interest in social connection. There’s what I call the ‘born to be mild’ effect, where little girls are trained to socialise more, to behave, not to make a fuss, if you feel uncomfortable, don’t tell anyone else about it. There’s a lovely comment from one late-diagnosed female who rues the fact that she was so well behaved and wishes that she had just burned more cars so that someone would have spotted her carefully camouflaged distress!” The final slide in the presentation covered what Professor Rippon called “an ironic footnote”. While Leo Kanner and Hans Asperger are described as the fathers of autism, writing in the 1940s, it was in fact a Soviet female psychiatrist, Grunya Sukhareva, writing in the 1920s, who first described autism, even clearly examining the differences in the condition between boys and girls. Why her research was ignored for so long is unclear, but the male spotlight problem may well have been avoided. For more information about The Lost Girls of Autism, visit https://www.panmacmillan.com/authors/gina-rippon/the-lost-girls-of-autism/9781035011629.

View all posts