Physical models of a patient’s brain help researchers treat neurological disorders and diseases

Oct 6, 2022

3 min

Ravi Hadimani

Brain phantoms are a creative solution for a challenging question: How do you tune an electromagnetic field to a patient without testing on the actual patient? Transcranial magnetic stimulation (TMS) is an application of electromagnetic research with the potential to change the way we treat migraines, depression, obsessive compulsive disorder and even conditions like schizophrenia and Parkinson’s disease.


Ravi Hadimani, Ph.D., associate professor of mechanical and nuclear engineering, leads a team of researchers who seek to use TMS to excite or inhibit brain neurons to alter specific brain functions and treat these conditions. This team includes faculty from VCU Health, including Mark Baron, M.D., professor of neurology and Kathryn Holloway, M.D., professor of neurosurgery, as well as outside collaborators like Joan Camprodon, M.D., associate professor of psychiatry at Harvard Medical School.


“The brain phantom is a first step,” says Hadimani, “Our ultimate goal is to 3D print a brain fabricated with biomaterial scaffolds and printed neurons that produce a stimulation response similar to neurons in our brain. This model would behave more realistically than current brain phantoms. Our future work involves collaborating with researchers who are able to print lab-grown neurons on biomaterial scaffolds or researchers who directly fabricate artificial neurons onto any scaffold.”


Coils used in TMS are responsible for generating the electromagnetic field used in treatment. Individual coils are designed to treat specific diseases, but additional settings like current strength, number of pulses and coil direction are unique to each patient. Refining these settings on the actual patient is not feasible. Computer modeling is also inefficient because creating head models and running simulations from MRI scans of the brain’s complex structure are not spontaneous.


Hadimani and his team developed the brain phantom as a novel solution to this problem. In 2018, the first model was created by Hamzah Magsood, one of Hadimani’s Ph.D. students. The brain phantom is a physical model of a patient’s brain designed to specifications obtained from MRI scans. Materials used in brain phantom construction are designed to replicate the electrical conductivity and electromagnetic permeability of different brain sectors. The result is a representation that, when connected to electrodes, provides instantaneous feedback to researchers calibrating TMS coils.


Elements of material science, electromagnetics and mechanical prototyping come together to create each brain phantom. The process starts with an MRI, which serves as a map for researchers designing the customized model. This is a careful process. Unlike other areas of the body with clear distinguishing features, like skin, muscle and bone, the brain has subtle differences between its many regions. Researchers must carefully distinguish between these areas to create an accurate brain phantom that will simulate a patient’s skin and skull as well as the brain’s gray and white matter.


A composite material of polymer and carbon nanotubes that exhibits electric properties similar to the human brain is the foundation for the brain phantom. Additive manufacturing, more commonly known as 3D printing, is used to create shells for different brain regions based on the patient’s MRI. This shell becomes a mold for the polymer and carbon nanotube solution. Once the brain phantom takes shape within the mold, it is placed within a solution that dissolves the casing, leaving only the brain phantom behind. The conductive parts of the brain phantom are dark because of the carbon nanotubes and non-conductive parts are lighter in color.


Electrodes are easily inserted into the brain phantom and provide feedback when an electromagnetic field from the TMS coil is applied. Adjustments to the strength, number of pulses of the field, and coil direction can then be made before applying the treatment to a patient.


Having recently received a patent for the brain phantom, Hadimani and Wesley Lohr, a senior biomedical engineering undergraduate, formed Realistic Anatomical Model (RAM) Phantom. The pair have been awarded both the Commonwealth Commercialization Fund Award and the Commonwealth Cyber Initiative Dreams to Reality Incubator Grant. RAM Phantom’s goal is to market brain phantom technology to the growing neuromodulation market, which also includes transcranial direct current stimulation and deep brain stimulation. The company will also aid in the development of advanced brain models that more accurately simulate the properties of the human brain.

Connect with:
Ravi Hadimani

Ravi Hadimani

Associate Professor and Director of Biomagnetics Laboratory

Professor Hadimani specializes in non-invasive brain stimulation, biomagnetics, magnetocalorics and energy harvesting research.

Transcranial Magnetic Stimulation (Tms)Piezoelectric Energy HarvestingMagnetic Nanoparticles Magnetocaloric EffectRare-Earth Magnetic Materials

You might also like...

Check out some other posts from VCU College of Engineering

1 min

Engineering professor develops eco-friendly method of creating semiconductor materials for electronics

A Virginia Commonwealth University researcher has developed an alternative method of producing semiconductor materials that is environmentally friendly. Semiconductors are crucial to modern electronics and displays, but they are constructed from toxic solvents. They also are created at high temperatures and pressures, resulting in both environmental damage and high production costs. The new technique has been introduced by Leah Spangler, Ph.D., assistant professor in the VCU College of Engineering’s Department of Chemical and Life Science Engineering, and Michael Hecht, a professor of chemistry at Princeton University. It demonstrates an alternative method to produce semiconductor materials called quantum dots using proteins at room temperature in water, resulting in a more environmentally friendly synthesis method. “This research uses de novo proteins, which are not taken from natural organisms but instead made by design for specific purposes,” Spangler said. “Therefore, this work shows that protein design can be leveraged to control material properties, creating an exciting new direction to explore for future research.” This work builds on natural examples of proteins creating materials, known as biomineralization. But this is the first example that uses de novo proteins made by design to control the synthesis of quantum dots. The study, “De Novo Proteins Template the Formation of Semiconductor Quantum Dots,” was published in the journal ACS Central Science. The work is related to a recent Department of Defense grant to Spangler to test an eco-friendly approach for separating rare earth elements into a refined final product using de novo proteins.

1 min

Department of Electrical and Computer Engineering professor Nibir Dhar, Ph.D., elevated to Virginia Microelectronics Center endowed chair

Nibir Dhar, Ph.D., director of the Convergence Lab Initiative and professor in the Department of Electrical and Computer Engineering, was recently appointed to the Virginia Microelectronics Center endowed chair. This position gives Dhar the opportunity to shape future scientists and engineers, as well as pursue breakthrough research at the College of Engineering. “It’s more than an academic role,” said Dhar. “It’s about preparing students for complex problems they’ll solve in industry and defense.” Dhar teaches semiconductor and infrared device courses while researching next-generation materials for real-world applications. He also explores AI’s ability to improve human-machine interactions. With his accomplished background and experience at national defense labs, Dhar bridges classroom theory with practical engineering challenges his students will face in their careers. “It feels incredible to be recognized this way. Virginia Commonwealth University truly values faculty who pour themselves into student success and university growth. What really drives me is knowing I’m helping build the next generation of problem-solvers. That’s where the real satisfaction comes from.” said Dhar. This promotion encourages Dhar to make bigger strides for research development that will transform both teaching methods and how technology advances in military and commercial sectors.

2 min

Secure communication technology research at VCU College of Engineering receives Commonwealth Cyber Initiative support

The Commonwealth Cyber Initiative’s (CCI) Northern Virginia Node recently awarded a $75,000 grant to Supriyo Bandyopadhyay, Ph.D., professor in the Department of Electrical and Computer Engineering at the Virginia Commonwealth University (VCU) College of Engineering, to develop an ultra-subwavelength microwave polarization switch for secure communication. The one-year grant comes through the Cyber Acceleration, Translation and Advanced Prototyping for University Linked Technology (CATAPULT) Fund. It supports Bandyopadhyay’s project, “An ultra-subwavelength microwave polarization switch for secure communication,” which develops a nanomagnet-based antenna integrated with a piezoelectric component. This system can switch the polarization of electromagnetic beams at specific microwave frequencies to enable secret communication between two points without traditional encryption methods. “Secret communication sheds the need for encryption,” Bandyopadhyay said. “Any cryptography can be broken, but this scheme does not use cryptography for secret communication and does not suffer from this vulnerability. It is also entirely based on hardware and cannot be hacked.” The technology offers significant benefits for banking, healthcare and government communications where data security is critical because a hardware-based approach makes it immune to software hacking. Another result of the research is antenna miniaturization, with antenna sizes several orders of magnitude smaller than the radiated wavelength. This addresses limitations in algorithms, physical size and power requirements that current secure communication systems face. Bandyopadhyay is collaborating with two researchers from the Department of Electrical and Computer Engineering at Virginia Tech and Erdem Topsakal, Ph.D., senior associate dean for strategic initiatives and professor in the Department of Electrical and Computer Engineering at VCU. Students involved in the project will be trained in antenna engineering, microwaves and communication engineering, gaining skills increasingly vital in today’s connected world.

View all posts