Engineering professor develops eco-friendly method of creating semiconductor materials for electronics

Current industrial methods use toxic solvents and damage the environment.

Jul 18, 2025

1 min

Leah Spangler, Ph.D.

A Virginia Commonwealth University researcher has developed an alternative method of producing semiconductor materials that is environmentally friendly.


Semiconductors are crucial to modern electronics and displays, but they are constructed from toxic solvents. They also are created at high temperatures and pressures, resulting in both environmental damage and high production costs.


The new technique has been introduced by Leah Spangler, Ph.D., assistant professor in the VCU College of Engineering’s Department of Chemical and Life Science Engineering, and Michael Hecht, a professor of chemistry at Princeton University. It demonstrates an alternative method to produce semiconductor materials called quantum dots using proteins at room temperature in water, resulting in a more environmentally friendly synthesis method.


“This research uses de novo proteins, which are not taken from natural organisms but instead made by design for specific purposes,” Spangler said. “Therefore, this work shows that protein design can be leveraged to control material properties, creating an exciting new direction to explore for future research.”


This work builds on natural examples of proteins creating materials, known as biomineralization. But this is the first example that uses de novo proteins made by design to control the synthesis of quantum dots.


The study, “De Novo Proteins Template the Formation of Semiconductor Quantum Dots,” was published in the journal ACS Central Science. The work is related to a recent Department of Defense grant to Spangler to test an eco-friendly approach for separating rare earth elements into a refined final product using de novo proteins.

Connect with:
Leah Spangler, Ph.D.

Leah Spangler, Ph.D.

Assistant Professor, Chemical and Life Science Engineering

Dr. Spangler's research interests include protein engineering, developing sustainable biomaterials, and renewable energy.

You might also like...

Check out some other posts from VCU College of Engineering

1 min

Department of Electrical and Computer Engineering professor Nibir Dhar, Ph.D., elevated to Virginia Microelectronics Center endowed chair

Nibir Dhar, Ph.D., director of the Convergence Lab Initiative and professor in the Department of Electrical and Computer Engineering, was recently appointed to the Virginia Microelectronics Center endowed chair. This position gives Dhar the opportunity to shape future scientists and engineers, as well as pursue breakthrough research at the College of Engineering. “It’s more than an academic role,” said Dhar. “It’s about preparing students for complex problems they’ll solve in industry and defense.” Dhar teaches semiconductor and infrared device courses while researching next-generation materials for real-world applications. He also explores AI’s ability to improve human-machine interactions. With his accomplished background and experience at national defense labs, Dhar bridges classroom theory with practical engineering challenges his students will face in their careers. “It feels incredible to be recognized this way. Virginia Commonwealth University truly values faculty who pour themselves into student success and university growth. What really drives me is knowing I’m helping build the next generation of problem-solvers. That’s where the real satisfaction comes from.” said Dhar. This promotion encourages Dhar to make bigger strides for research development that will transform both teaching methods and how technology advances in military and commercial sectors.

2 min

Secure communication technology research at VCU College of Engineering receives Commonwealth Cyber Initiative support

The Commonwealth Cyber Initiative’s (CCI) Northern Virginia Node recently awarded a $75,000 grant to Supriyo Bandyopadhyay, Ph.D., professor in the Department of Electrical and Computer Engineering at the Virginia Commonwealth University (VCU) College of Engineering, to develop an ultra-subwavelength microwave polarization switch for secure communication. The one-year grant comes through the Cyber Acceleration, Translation and Advanced Prototyping for University Linked Technology (CATAPULT) Fund. It supports Bandyopadhyay’s project, “An ultra-subwavelength microwave polarization switch for secure communication,” which develops a nanomagnet-based antenna integrated with a piezoelectric component. This system can switch the polarization of electromagnetic beams at specific microwave frequencies to enable secret communication between two points without traditional encryption methods. “Secret communication sheds the need for encryption,” Bandyopadhyay said. “Any cryptography can be broken, but this scheme does not use cryptography for secret communication and does not suffer from this vulnerability. It is also entirely based on hardware and cannot be hacked.” The technology offers significant benefits for banking, healthcare and government communications where data security is critical because a hardware-based approach makes it immune to software hacking. Another result of the research is antenna miniaturization, with antenna sizes several orders of magnitude smaller than the radiated wavelength. This addresses limitations in algorithms, physical size and power requirements that current secure communication systems face. Bandyopadhyay is collaborating with two researchers from the Department of Electrical and Computer Engineering at Virginia Tech and Erdem Topsakal, Ph.D., senior associate dean for strategic initiatives and professor in the Department of Electrical and Computer Engineering at VCU. Students involved in the project will be trained in antenna engineering, microwaves and communication engineering, gaining skills increasingly vital in today’s connected world.

2 min

DARPA awards VCU $4.875 million for development of modular drug manufacturing platform

The Defense Advanced Research Projects Agency (DARPA) is funding a $13M grant for a Rutgers University and Virginia Commonwealth University (VCU) partnership through the EQUIP-A-Pharma program, with $4.175 million to James Ferri, Ph.D., professor in the Department of Chemical and Life Science Engineering at VCU, to develop a modular manufacturing platform for sterile liquid drug products. The 24-month grant supports Ferri’s project, “Modular Manufacturing of Sterile Liquid Drug Products,” which develops a continuous manufacturing platform capable of producing highly potent drug substances such as albuterol sulfate and bupivacaine hydrochloride. These drug substances are for use in sterile liquid products, where compliance with purity of the active pharmaceutical ingredient (API) and impurity profiles are characterized and controlled in real time throughout the manufacturing process. “This work enables agile continuous manufacturing of drug substance and end-to-end drug product manufacturing of several highly potent drug substances with real time quality control,” Ferri said. “The combination of dynamic modular operation and real-time quality control will increase the supply of critical medicines in the United States.” Drug shortages continue to receive national attention, with albuterol sulfate and bupivacaine hydrochloride both appearing on the U.S. Food and Drug Administration drug shortage list within the past year. The project develops technologies that enable distributed manufacturing approaches to essential medicines currently in shortage in the United States. The platform incorporates several innovative features including continuous flow synthesis for improved process performance, online spectroscopy for real-time quality control, and modular unit operations that can be rapidly configured for different drug products. Key technologies include heterogeneous catalytic flow reactors, in-line purification systems and advanced process analytical technologies. The continuous manufacturing approach offers significant advantages over traditional batch manufacturing, including improved process control, reduced waste and the ability to produce medicines closer to the point of care. The modular design enables rapid deployment and flexible manufacturing of multiple drug products using the same platform. Ferri is collaborating with researchers from Rutgers University on the project, which began in August 2024. The platform is designed to fit within a standard shipping container, enabling distributed manufacturing capabilities. The research directly addresses national security concerns about pharmaceutical supply chain vulnerabilities while advancing the field of continuous pharmaceutical manufacturing. Students involved in the project gain experience in cutting-edge manufacturing technologies that are increasingly important in addressing global health challenges.

View all posts