Type 2 diabetes: why treatment plans may need to be different for older adults

Sep 8, 2021

4 min



Around 6% of the world’s population suffer from type 2 diabetes. People of any age can develop the condition, but the number of older adults with type 2 diabetes is rapidly increasing worldwide. In fact, adults over the age of 65 now account for almost half of all adult cases.


There are many ways type 2 diabetes can be managed – including controlling weight through diet and exercise, or taking a drug to manage blood sugar levels. But many people may not realise that type 2 diabetes in older adults can be more complicated to manage. This means people over 65 may need to be managed differently when it comes to type 2 diabetes.


There are a number of reasons why type 2 diabetes may be more difficult to manage in older adults. First, ageing can affect blood sugar control, as the body’s organs (such as the pancreas, which controls insulin and blood sugar levels) lose their ability to work as well as they used to.


On top of this, some research has shown that diabetes may cause people to age faster. It’s thought that this is due to high levels of sugar in the blood stream prematurely ageing the body’s cells. This premature ageing could lead to diseases associated with age-related decline (such as arthritis or dementia) happening sooner.


Frailty – a state of health that is associated with reduced physical and mental resilience in older adults – also affects more people with type 2 diabetes than the rest of the population. In fact, an estimated 25% of older adults with type 2 diabetes are also frail. People who are frail and have type 2 diabetes have poorer health and increased risk of death from all causes compared to those who are not frail. Frailty is associated with reduced physical and cognitive functions and increased risk of low blood sugar. Both of these factors can make treating type 2 diabetes more complicated.


Dementia, which is more common in older adults, may also make it more difficult to manage type 2 diabetes. This is because the memory problems this condition causes may make it harder for patients to remember to take their medication, or take the proper medication dosage. What’s more, type 2 diabetes in older adults is actually a risk factor for developing dementia – including Alzheimer’s disease. While the link between the two isn’t fully understood, elevated blood sugar levels and insulin not working properly have been suggested as causes.


Having other health conditions can also make it more difficult to treat diabetes. Up to 40% of older adults with type 2 diabetes have four or more co-existing diseases – such as heart disease or dementia. These conditions can make it impossible to achieve normal treatment targets and the drugs used to treat them can interact with those used to treat diabetes – which could lead to harm if not managed carefully. Alongside this, poor access to proper medical care, and being more susceptible to low blood sugar in older age are also reasons why treating diabetes can be so difficult in this age group.


Managing type 2 diabetes


Most medical treatments for type 2 diabetes work to keep blood sugar levels low, and prevent them from spiking. But older adults with type 2 diabetes may actually have an increased risk of developing dangerously low blood sugar levels. This usually happens if the medication is not used at the correct dose, or in people who have had diabetes for a long time.


Older adults can also be susceptible to low blood sugar levels. Syda Productions/ Shutterstock


Having very low blood sugar levels is dangerous as it can increase the risk of falls – a serious and sometimes life-threatening problem in older adults. Very low blood sugar levels also increase the risk of heart problems. This means that healthcare professionals need to be careful they aren’t being too aggressive in treatment plans for older adults to avoid causing other health problems.


Ageing may also alter the body’s response to low blood sugar. This is significant, as when blood sugar falls too low it is extremely dangerous and can even be fatal.


Older adults may also be less able to recognise the symptoms of low blood sugar compared to young adults. This is because symptoms such as dizziness and confusion are often less specific in older adults, and can be confused with dementia. Older adults may also take longer to recover from low blood sugar.


Given that repeated bouts of low blood sugar can mean that older people are less able to sense when it’s happened in the future, it’s important that drugs prescribed to older adults for type 2 diabetes are given at the correct doses. Care especially needs to be taken prescribing insulin, the body’s blood sugar control hormone, to very old adults as this significantly increases the risk of low blood sugar.


Given our ageing population, it is projected that more older adults will have type 2 diabetes in the future. This makes it especially important to improve how we treat diabetes in this age group. Though specific treatment guidelines have been developed, some evidence suggests that care approaches need to be more cautious and personalised to each patient, taking into account their other health conditions, and that treatments consider quality of life for each patient.


This article was co-written by Dr James Brown and Dr Srikanth Bellary

You might also like...

Check out some other posts from Aston University

2 min

Aston University’s Ian Maidment helps develop training for pharmacy staff supporting those with long COVID

The e-learning resource, Supporting people living with long COVID, was developed by the Centre for Pharmacy Postgraduate Education (CPPE) It is designed to help community pharmacy teams build their skills, knowledge and confidence The programme offers video and audio resources, practical consultation examples and strategies for supporting individuals. Professor Ian Maidment at Aston Pharmacy School has been involved in a project with the Centre for Pharmacy Postgraduate Education (CPPE) to develop a new e-learning programme for community pharmacists, called Supporting people living with long COVID. The programme is designed to help community pharmacy teams build their skills, knowledge and confidence to support people managing the long-term effects of COVID-19. It was developed with researchers undertaking the National Institute for Health and Care Research (NIHR)-funded PHARM-LC research study: What role can community PHARMacy play in the support of people with long COVID? During the development of the e-learning resource, as well as with Professor Maidment, CPPE worked in collaboration with researchers from Keele University, the University of Kent, Midlands Partnership University NHS Foundation Trust and lechyd Cyhoeddus Cymru (Public Health Wales). The research draws on lived experience of long COVID, as well as the views of community pharmacy teams on what learning they need to better support people living with the condition. This new programme offers video and audio resources, practical consultation examples and strategies for supporting individuals through lifestyle advice, person-centred care and access to wider services. Professor Maidment said: “As an ex-community pharmacist, community pharmacy can have a key role in helping people living with long COVID. The approach is in line with the NHS 10 Year Health Plan, which aims to develop the role of community pharmacy in supporting people with long-term conditions.” Professor Carolyn Chew-Graham, professor of general practice research at Keele University, said: “Two million people in the UK are living with long COVID, a condition people are still developing, which may not be readily recognised, because routine testing for acute infection has largely stopped. For many, the pharmacy is the first place they seek advice about persisting symptoms following viral infection. The pharmacy team, therefore, has the potential to play a really important role in supporting people with long COVID. This learning programme provides evidence-based information to develop the confidence of pharmacy staff in talking to people with long COVID. Developed with people living with long COVID, the programme’s key message is to believe and empathise with people about their symptoms.” Visit www.cppe.ac.uk/programmes/l/covid-e-01 to access the e-learning programme. This project is funded by the National Institute for Health Research (NIHR) under its Research for Patient Benefit (RfPB) Programme (Grant Reference Number NIHR205384).

4 min

Deaf children share insights on what researchers should study next in Aston University co-led project

Aston University’s Dr Amanda Hall co-led the study with Dr Anisa Visram from the University of Manchester Deaf children and those with experience of childhood deafness have identified their top 10 research priorities including education and family relationships The project was funded by the National Deaf Children’s Society Deaf children and people with experience of childhood deafness from across the UK have come together to highlight what matters most to children affected by deafness and hearing loss, as part of a project funded by the National Deaf Children’s Society (NDCS). From 2023 to 2025, a team of parents, young people and health and education professionals set out to compile a list of the ‘Top 10’ most important questions that researchers should be trying to answer about childhood deafness and hearing loss. The project was co-led by Dr Amanda Hall, a senior lecturer in audiology at Aston University, and Dr Anisa Visram from the University of Manchester in conjunction with researchers at Lancaster University. The hope is that it will ultimately lead to more research into childhood deafness, in the specific areas it’s needed most. Children highlighted the potential impact of them missing out on things happening around them when interacting with their peers as their top priority, demonstrating the importance of social development for deaf children. Family relationships and educational needs ranked as high priorities for both adults and children, coming in the top 3 for both groups. Adults ranked educational needs as number 1, highlighting the importance of supporting deaf children in schools, particularly those with additional needs. Other important areas for research included understanding what support is needed for children with mild and unilateral (on one side) deafness, the impact of language deprivation on deaf children and how deaf children can be supported to understand their deafness and become empowered to advocate for themselves as they grow up into deaf adults. Several hundred respondents contributed to the project through a series of online surveys. Children were involved through activity-based focus groups. Respondents submitted over 1,200 ideas for research questions in the initial surveys. These were summarised into a list of 59 unique questions, and a second survey was used to prioritise the questions. The top 21 questions were then taken to two final full-day workshop where participants collaborated to choose their top 10 priorities. The research team used what’s known as a James Lind Alliance (JLA) priority-setting process to ensure the robustness of the project. Participants reported feeling valued as part of the project and satisfied that their feedback is reflected in the final lists. One of the children who took part in the workshop said: “I learnt that my voice matters and I can make a difference for me and other deaf children.” Dr Hall said: “It has been a real privilege to be part of this JLA partnership, working alongside deaf young people, families of deaf children and professionals to identify our two sets of top 10 research questions. We hope this is just the beginning of more research that reflects what matters most to deaf children, their families and professionals, and of more opportunities to work together.” Dr Visram said: “This has been an incredible project to work on with an amazing, committed, and diverse stakeholder group feeding into the process at all stages. We have formed important collaborations with deaf young people, parents of deaf children, and a whole range of professionals working with deaf children. The group plan to keep working together to promote the Top 10 lists and help develop research projects to start to answer these important questions.” Juliet Viney is a parent to a deaf child and has supported the project as a parent partner. She said: “It has been an absolute privilege working as a parent partner developing our Top 10 most important research questions for childhood deafness. This project has brought together and empowered deaf children and young people, parents and professionals from across the UK; using their valuable lived experiences to provide them with a strong voice to guide researchers towards addressing what is most needed to improve deaf children's educational, health, social and emotional outcomes. I am excited to see which questions will be pursued in further research and the positive impacts these will have on the lives of deaf children!” Dr Sian Lickess, Research and Analysis Lead at the National Deaf Children’s Society, said: “We are proud to have supported this important partnership, which has brought together the voices of deaf children, their families and professionals to shape future research priorities. The resulting Top 10 lists represent an important step toward ensuring research is aligned with real-world needs and is meaningful to those most affected. We look forward to the impact this work will have on improving outcomes for deaf children.” The full list of priorities identified can be found at: www.childdeafnessresearch.co.uk. As well as the National Deaf Children’s Society, several other partners have also contributed to the project. These include the Professor Kevin Munro’s National Institute for Health and Care Research (NIHR) Senior Investigator award, NIHR Manchester Biomedical Research Centre, PF Charitable Trust, Research England’s QR Participatory Research Fund to Lancaster University, and UKRI Future Leaders Fellowship MR/X035999/1.

2 min

Professor Roslyn Bill selected for the inaugural cohort of the Big if True Science accelerator

Professor Roslyn Bill is the director of Aston Institute for Membrane Excellence (AIME) The Big if True Science (BiTS) accelerator aims to bridge the gap between cutting-edge lab science and multi-million-dollar collaborative projects Professor Bill’s research is focused on the brain’s plumbing system and developing drugs against traumatic brain injury and cognitive decline. Professor Roslyn Bill, director of Aston Institute for Membrane Excellence (AIME), has been selected as an inaugural fellow of the new Big if True Science (BiTS) accelerator. BiTS was set up by a non-profit organisation, Renaissance Philanthropy, to support its scientist and innovator fellows in developing groundbreaking research initiatives and equip them with the tools, skills, and networks needed to design high-impact, collaborative research programmes and technical projects with multi-million-dollar budgets beyond their own laboratories. The first cohort of 12 fellows was selected after a highly competitive process. The cohort represents diverse fields including neuroscience, environmental engineering, biomedical research, and materials science. Over a 15-week period, they will transform their breakthrough concepts into fundable eight-figure R&D programmes, before pitching their ideas to funders on 10 December 2025. Professor Bill’s research focuses on the glymphatic system, the brain’s ‘plumbing’ system, which facilitates the movement of fluid and clears waste products. Water moves in and out of brain cells through tiny protein channels in the cell membrane called aquaporins. Uncontrolled water entry, for example, after a head injury, can cause catastrophic swelling and severe brain injuries of the type suffered by racing driver Michael Schumacher after a skiing accident. When the flow is impeded, for example, as we age, waste products can build up, leading to diseases like Alzheimer’s. In 2020, Professor Bill was lead author on a paper published in the prestigious journal Cell on how the flow of water through aquaporin-4 is controlled. She is now researching drugs to affect this process, which could have a huge impact on the treatment of traumatic brain injury and cognitive decline. Professor Bill said: “Every year, tens of millions of people are affected by injuries to their brains. Every three seconds, someone in the world develops dementia. There are no medicines that can fix these terrible conditions. Being an inaugural member of BiTS is a great honour, and I am delighted to be in the company of truly inspiring people. This exciting programme offers hope to patients for whom no medicines are available!”

View all posts