How potato milk measures up against other plant-based milk alternatives

Mar 7, 2022

4 min

Dr Duane Mellor



It seems like almost every plant-based food is being turned into “milk” these days, the latest being potato milk.


It’s not surprising that potatoes have been chosen to be the latest plant-based milk. After all, potatoes have many health benefits because they’re full of important vitamins and nutrients. But how do they measure up to other popular plant-based milks?


Protein content


No matter the type of plant-based milk, they only contain a fraction of the ingredient they’re derived from. For example, only 10% of the volume of a carton of rice or oat milk comes from these grains. Soy drinks contain between 5%-8% of the actual soya bean, and almond milks contain as little as 2% of the actual nut. Since coconut uses the cream or milk from the fruit, it contains between 5%-13%, depending on how creamy the product is. And based on the current potato milk products out there, a one-litre carton only contains around 60g of an actual potato – a small potato.


The problem with this is that these milks now contain far fewer vitamins and nutrients than the raw ingredient would. This may make them less nutritious than they would be if you ate the ingredient whole.


Take protein, for example. Ingredients like almonds are naturally great sources of protein containing over 20g of protein per 100g of almonds.


But after processing, 100 millilitres of almond milk only contains around one gram of protein. This is actually the same amount of protein you’d find in the same amount of oat milk – even though oats contain far less protein (13.5g per 100g).


Soya milk is better as it contains more of the soya beans compared with almond milk. In fact, soya milk gives around 3-3.5g of protein per 100ml. This is about as much protein as you get in the same amount of cow’s milk. And like cow’s milk, soya milk contains essential amino acids which our body isn’t able to naturally produce. Amino acids are important as they ensure our body works properly – such as by helping our muscles keep moving.


Potatoes are already low in protein. This means that after processing, potato milk contains about as much protein as coconut and rice milk – less than 0.5g of protein per 100ml. But some potato milk brands do supplement with pea protein, which makes a 100ml serving have around 1.3g of protein.


So if you’re choosing your plant-based milk for protein content, you might be best sticking with soya or almond milk over potato milk.


Added sugars


As with cow’s milk, plant-based milks can also contain added sugars. We are encouraged to limit our added sugar intake to no more than five to six teaspoons a day. This is because eating too much sugar is linked to an increased risk of obesity as well as tooth decay. But given many products sell both sweetened and unsweetened versions, it’s easier for someone to buy a product that contains no sugar.


Sweetened potato milk contains about 1.8g of sugar per 100ml. This is a little less than other plant-based milks which contain around 2 to 3.5g of added sugar per 100ml. So in this category, potato milk comes out on top. Although some plant-based milk uses natural sugars from fruit, this is still considered added sugar and should be limited.


Fat content


Since potatoes are naturally low in fat, potato milk would have a texture more akin to water. This is why extra fat is added to it. A similar thing is done with rice and oat milk, where oil (such as sunflower oil) is added. This brings the fat content up so that it’s closer to semi-skimmed milk (about 1.5g per 100ml). For potato milk, rapeseed oil is added. Almond and soya both tend to contain fat already, so no additional oil is added.


This means that compared with other plant-based milks, potato milk is higher in monounsaturated fats, which are thought to be better for your heart. They’re also lower in saturated fats than cow’s milk, which is thought to be less healthy for our hearts.


A “barista version” of milk alternatives needs to contain a combination of both protein and fat in order for the milk to foam, so have slightly more fat added to them.


Added vitamins


When it comes to vitamins and minerals, many plant-based milks have these added to them, as they simply don’t have as many as cow’s milk naturally does.


Vitamins like riboflavin, B12 and D alongside calcium are added to potato milks. The same is also true for other plant-based milks – although organic versions may not have added vitamins often due to organic food rules and trying to keep the label clean of additives.


As many of us struggle to get enough vitamin D – which is essential for healthy bones and immune system – and many vegans and vegetarians can have low B12 levels (which is needed to keep our blood cells and nerves healthy) going for milk alternatives with these added vitamins and minerals can be a good idea.


Potato milk is yet another option for those wanting an alternative to cow’s milk or other plant-based milks, or those looking for a more environmentally friendly milk product. Nutritionally, it may not contain the protein of soya milk, but many products are fortified, so they still contain important vitamins and minerals.


But since it contains several refined ingredients, such as oils and protein isolates (proteins extracted from foods), it may technically count as an ultra-processed food. There are some concerns about ultra-processed foods, which have been linked to chronic disease – so it is yet to be seen whether potato milk has similar risks.

Connect with:
Dr Duane Mellor

Dr Duane Mellor

Visiting Academic

Dr Mellor is an award-winning dietitian, science communicator, medical educator and researcher.

Food ScienceDieteticsDiabetesObesityNutrition

You might also like...

Check out some other posts from Aston University

2 min

Aston University researchers to take the first steps to find out if AI can help policymakers make urban mobility more sustainable

Researchers to explore how AI can help urban mobility planners They are to investigate AI-driven policy tools’ potential to create greener cities Project to benefit from expertise of five European universities. A European group of researchers led by Aston University is taking the first steps to explore how AI can help urban mobility planners. As city populations grow causing strain on resources, the experts are to investigate AI-driven policy tools’ potential to create greener cities. The team have received £10,000 in funding from the British Academy which they hope will set them on the road to further research. Taking part in the project will be experts from University College London, Ruralis University in Norway, the University of Turin, Italy and Lisbon University Institute, Portugal. Dr Dalila Ribaudo from the Centre for Business Prosperity at Aston Business School and Dr Alina Patelli from the Aston Centre for Artificial Intelligence Research and Application will co-lead a UK-EU consortium consolidation project. The interdisciplinary project will benefit from expertise in applied business and specialist insight into global economics, policymaking and urban transport planning. Dr Patelli said “Policymakers and society could all benefit from our research into innovative ways of managing the strain on urban infrastructures and resources. "The AI-powered policy tools we are developing are meant to support decision managers at all levels of urban governance with reducing emissions, optimising transportation as well as predicting and preventing environmental hazards. Such changes would improve the quality of life for the millions of people living in towns and cities across the UK, Europe and, in the long term, the entire world.” Following the successful bid for the British Academy pump priming grant the team will apply for Horizon Europe funding to continue developing impactful AI-driven policy tools for greener cities.

3 min

New Aston University spin-out company will develop novel ways to treat non-healing wounds

EVolution Therapeutics (EVo) has been founded on the work of Professor Andrew Devitt into the causes of inflammatory disease A failure to control inflammation in the body, usually a natural defence mechanism, can cause chronic inflammation, such as non-healing wounds Non-healing wounds cost the NHS £5.6bn annually, so there is a vital need for new treatments. Aston University’s Professor Andrew Devitt, Dr Ivana Milic and Dr James Gavin have launched a new spin-out company to develop revolutionary treatments to treat chronic inflammation in patients. One of the most common inflammatory conditions is non-healing wounds, such as diabetic foot ulcers, which cost the NHS £5.6bn annually, the same cost as managing obesity. Such wounds are generally just dressed, but clinicians say there is a vital need for active wound treatments, rather than passive management. The spin-out, Evolution Therapeutics (EVo), will aim to create these vital active treatments. Inflammation in the human body helps to fight infection and repair damage following injury and occurs when the immune system floods the area with immune cells. Normally, this inflammation subsides as the damage heals, with the immune system signalling to the immune cells to leave. However, in some cases, the usual healing mechanism is not triggered and the inflammatory response is not turned off, leading to chronic inflammation and so-called inflammatory diseases. EVo is based on Professor Devitt’s work on dying cells in the body, known as apoptotic cells, and how they contribute to health. Dying cells release small, membrane-enclosed fragments called extracellular vesicles (EVs), which alert the immune system to the death of cells, and then trigger the body’s natural repair mechanism and remove the dead cells. It is estimated that 1m cells die every second. Professor Devitt and his team have identified the molecules within the EVs which control the healing process and are engineering new EVs loaded with novel healing enzymes, to drive the body’s repair responses to actively heal wounds. Much of the research has been funded by the Biotechnology and Biological Sciences Research Council (BBSRC) with additional support from the Dunhill Medical Trust. Professor Devitt, Dr Milic and Dr Gavin received Innovation-to-Commercialisation of University Research (ICURe) follow-on funding of £284,000 to develop the vesicle-based therapy with EVo. Most recently, in December 2023, Professor Devitt and Dr Milic were awarded £585,000 from the BBSRC Super Follow-on-Fund to develop engineered cells as a source of membrane vesicles carrying inflammation controlling cargo. The team, together with Professor Paul Topham, also received funding from the National Engineering Biology Programme (£237,000) to support polymer delivery systems for vesicles. EVo is one of the 12 projects being supported by SPARK The Midlands, a network which aims to bridge the gap between medical research discoveries of novel therapeutics, medical devices and diagnostics, and real-world clinical use. SPARK The Midlands is hosted at Aston University, supported by the West Midlands Health Tech Innovation Accelerator (WMHTIA), and was launched at an event on 31 January 2024. Professor Devitt, EVo chief technical officer, said: “Inflammation is the major driver of almost all disease with a huge contribution to those unwelcome consequences of ageing. We are now at a most exciting time in our science where we can harness all the learning from our research to develop targeted and active therapies for these chronic inflammatory conditions.” Dr Gavin, EVo CEO, said: “The chronic inflammation that results in non-healing wounds are a huge health burden to individuals affecting quality of life as we age but also to the economy. Our approach at EVo is to target the burden of non-healing wounds directly to provide completely novel approaches to wound care treatment. By developing a therapy which actively accelerates wound healing, we hope to drastically improve quality of life for patients, whilst reducing the high cost attached to long term treatment for healthcare systems worldwide.”

4 min

“Females are not autistic enough”: Aston University academic hosts talk on new book exploring female autism

Professor Gina Rippon signs a copy of The Lost Girls of Autism for talk attendee Dr Georgie Agar Professor Gina Rippon’s new book, The Lost Girls of Autism, investigates why autism was thought to be a male condition for so long She gave a public talk at Aston University on 6 May 2025 exploring the central themes of the book Women and girls with autism have long been overlooked as they are better at masking and camouflaging so ‘fail’ standard tests. Autism in women and girls has been overlooked for decades, and Gina Rippon, professor emeritus of cognitive neuroimaging at Aston University Institute of Health and Neurodevelopment (IHN), has given a talk about her new book on the topic at Aston University. The book, The Lost Girls of Autism, was released on 3 April 2025, coinciding with Autism Acceptance Month, with the subtitle ‘How Science Failed Autistic Women and the New Research that’s Changing the Story’. Autism is characterised by a number of now well-known traits, including social awkwardness, extreme obsessions, and unusual movements and coping mechanisms known as ‘stimming’. It was (allegedly) first described in the 1940s separately by Austrian psychiatrists Leo Kanner and Hans Asperger. Originally identified as a rare developmental condition, since the 1980s, there has been an 800% increase in diagnoses, leading to concerns about an ‘autism epidemic’. There is a strong and enduring belief that it is a condition much more prevalent in males. Professor Rippon described her research as “looking at how brains get to be different and what that means for the owners of those brains”. This includes looking at the functions of different areas of the brain using scanners. During research into a number of brain conditions and diseases with obvious differences between the sexes, including how the disease progresses, such as Alzheimer’s in women, or prevalence in one particular sex, such as Parkinson’s in men, Professor Rippon also became interested in autism, also assumed to be largely a condition in males. However, during a research review, she found that many autism studies made no reference to sex differences. Amalgamated data from autism studies found that 80% of participants were male, and 25% of testing centres only tested males with autism. By only looking at males, Professor Rippon explained, the notion that autism is a male disorder became self-fulfilling. This does not just refer to scientific research. Even now, boys are ten times more likely to be referred for assessment for autism and twice as likely to be diagnosed than girls, even when they have exactly the same traits. 80% of autistic females have received multiple wrong diagnoses, including borderline personality disorder, social anxiety or obsessive-compulsive disorder (OCD). But why? The reason is the unchallenged belief that ‘autism is a “boy” thing’ causing a male spotlight problem in all aspects of the autism story. It could also be that females with autism express the condition differently. Professor Rippon said: “This took me back to [my previous book] The Gendered Brain when I was looking at the very clear view of what males should be like and what females should be like. If you look at the autistic population you have this clear idea that males are like this, but females, er, not so much? Females have poor social skills, but not as poor, or obsessive interests, but not as obsessive, so the trouble with females, is that they are not autistic enough.” The gold standard tests for autism are the Autism Diagnostic Observation Schedule (ADOS) and the Autism Diagnostic Interview (ADI) tests. Professor Rippon believes these are heavily biased towards how the condition manifests itself in males, such as social awkwardness or extreme obsessions. For example, parents may well be asked if their son has an unusual interest in weather patterns or train timetables, but they are not asked if their daughter has an unusual interest in Barbie dolls, because dolls are seen as socially acceptable. Research has shown that females with autism are more likely to ‘camouflage’ their symptoms, watching how ‘normal people’ behave, even practising social interactions, so they appear more normal. They are also more likely to ‘mask’ symptoms behind a persona, such as the ‘class clown’ or ‘star athlete’, in an effort to fit in. Autistic females describe this behaviour as a ‘survival strategy’ to avoid being spotted as different. It is also the case that girls are more likely to have sensory processing problems, such as aversion to strong smells, which can be enough to affect their day-to-day lives. This has only recently been added to the diagnostic criteria for autism. If the camouflaging or masking collapses, rates of other conditions such as disordered eating or anorexia, self-harm and gender dysphoria are disproportionately high, and it is these which will become identified as the underlying difficulty, rather than autism itself. Professor Rippon said: “The next stage should be asking why this group of individuals persists in hiding their autism, especially when autism has been defined as a lack of interest in social connection. There’s what I call the ‘born to be mild’ effect, where little girls are trained to socialise more, to behave, not to make a fuss, if you feel uncomfortable, don’t tell anyone else about it. There’s a lovely comment from one late-diagnosed female who rues the fact that she was so well behaved and wishes that she had just burned more cars so that someone would have spotted her carefully camouflaged distress!” The final slide in the presentation covered what Professor Rippon called “an ironic footnote”. While Leo Kanner and Hans Asperger are described as the fathers of autism, writing in the 1940s, it was in fact a Soviet female psychiatrist, Grunya Sukhareva, writing in the 1920s, who first described autism, even clearly examining the differences in the condition between boys and girls. Why her research was ignored for so long is unclear, but the male spotlight problem may well have been avoided. For more information about The Lost Girls of Autism, visit https://www.panmacmillan.com/authors/gina-rippon/the-lost-girls-of-autism/9781035011629.

View all posts