Antimicrobial resistance now causes more deaths than HIV/AIDS and malaria worldwide – new study

Mar 7, 2022

4 min

Dr Jonathan A. G. Cox



Antimicrobial resistance is spreading rapidly worldwide, and has even been likened to the next pandemic – one that many people may not even be aware is happening. A recent paper, published in Lancet, has revealed that antimicrobial resistant infections caused 1.27 millions deaths and were associated with 4.95 million deaths in 2019. This is greater than the number of people who died from HIV/AIDS and malaria that year combined.


Antimicobial resistance happens when infection-causing microbes (such as bacteria, viruses or fungi) evolve to become resistant to the drug designed to kill them. This means than an antibiotic will no longer work to treat that infection anymore.


The new findings makes it clear that antimicrobial resistance is progressing faster than the previous worst-case scenario estimates – which is of concern for everyone. The simple fact is that we’re running out of antibiotics that work. This could mean everyday bacterial infections become life-threatening again.


While antimicrobial resistance has been a problem since penicillin was discovered in 1928, our continued exposure to antibiotics has enabled bacteria and other pathogens to evolve powerful resistance. In some cases, these microbes are resistant even to multiple different drugs. This latest study now shows the current scale of this problem globally – and the harm it’s causing.


Global problem

The study involved 204 countries around the world, looking at data from 471 million individual patient records. By looking at deaths due to and associated with antimicrobial resistance, the team was then able to estimate the impact antimicrobial resistance had in each country.


Antimicrobial resistance was directly responsible for an estimated 1.27 million deaths worldwide and was associated with an estimated 4.95 millions deaths. In comparison, HIV/AIDS and malaria were estimated to have caused 860,000 and 640,000 deaths respectively the same year. The researchers also found that low- and middle-income countries were worst hit by antimicrobial resistance – although higher income countries also face alarmingly high levels.


They also found that of the 23 different types of bacteria studied, drug resistance in only six types of bacteria contributed to 3.57 million deaths. The report also shows that 70% of deaths that resulted from antimicrobial resistance were caused by resistance to antibiotics often considered the first line of defence against severe infections. These included beta-lactams and fluoroquinolones, which are commonly prescribed for many infections, such as urinary tract, upper- and lower-respiratory and bone and joint infections.


This study highlights a very clear message that global antimicrobial resistance could make everyday bacterial infections untreatable. By some estimates, antimicrobial resistance could cause 10 million deaths per year by 2050. This would overtake cancer as a leading cause of death worldwide.


Next pandemic

Bacteria can develop antimicrobial resistance in a number of ways.


First, bacteria develop antimicrobial resistance naturally. It’s part of the normal push and pull observed throughout the natural world. As we get stronger, bacteria will get stronger too. It’s part of our co-evolution with bacteria – they’re just quicker at evolving than we are, partly because they replicate faster and get more genetic mutations than we do.


But the way we use antibiotics can also cause resistance.


For example, one common cause is if people fail to complete a course of antibiotics. Although people may feel better a few days after starting antibiotics, not all bacteria are made equal. Some may be slower to be affected by the antibiotic than others. This means that if you stop taking the antibiotic early, the bacteria that were initially able to avoid the effect of the antibiotics will be able to multiply, thus passing their resistance on.


Likewise, taking antibiotics unnecessarily can help bacteria to evolve resistance to antibiotics faster. This is why it’s important not to take antibiotics unless they’re prescribed, and to only use them for the infection they’re prescribed for.


Resistance can also be spread from person to person. For example, if someone who has antibiotic-resistant bacteria in their nose sneezes or coughs, it may be spread to people nearby. Research also shows that antimicrobial resistance can be spread through the environment, such as in unclean drinking water.


The causes driving this global antimicrobial resistance crisis are complex. Everything from how we take antibiotics to environmental pollution with antimicrobial chemicals, use of antibiotics in agriculture and even preservatives in our shampoo and toothpaste are all contributing to resistance. This is why a global, unified effort will be needed to make a difference.


Urgent change is needed in many industries to slow the spread of antimicrobial resistance. Of the greatest importance is using the antibiotics we have smarter. Combination therapy could hold the answer to slowing down antimicrobial resistance. This involves using several drugs in combination, rather than one drug on its own – making it more difficult for bacteria to evolve resistance, while still successfully treating an infection.


The next pandemic is already here – so further investment in research that looks at how we can stop this problem will be key.

Connect with:
Dr Jonathan A. G. Cox

Dr Jonathan A. G. Cox

Lecturer in Microbiology

Dr Cox's research interests surround the discovery of new antibiotics & identifying the mechanisms by which those antibiotics kill bacteria.

Health SciencesBiochemistryAntibioticsAntimicrobial ResistanceMicro-Organisms

You might also like...

Check out some other posts from Aston University

3 min

Aston University researcher develops new optical technique that could revolutionise medical diagnostics

New light technique could revolutionise non-invasive medical diagnostics Orbital Angular Momentum could be harnessed to improve imaging and data transmission through biological tissues Could eventually have potential to make procedures such as surgery or biopsies unnecessary. An Aston University researcher has developed a new technique using light which could revolutionise non-invasive medical diagnostics and optical communication. The research showcases how a type of light called the Orbital Angular Momentum (OAM) can be harnessed to improve imaging and data transmission through skin and other biological tissues. A team led by Professor Igor Meglinski found that OAM light has unmatched sensitivity and accuracy that could result in making procedures such as surgery or biopsies unnecessary. In addition it could enable doctors to track the progression of diseases and plan appropriate treatment options. OAM is defined as a type of structured light beams, which are light fields which have a tailored spatial structure. Often referred to as vortex beams, they have previously been applied to a number of developments in different applications including astronomy, microscopy, imaging, metrology, sensing, and optical communications. Professor Meglinski in collaboration with researchers from the University of Oulu, Finland conducted the research which is detailed in the paper “Phase preservation of orbital angular momentum of light in multiple scattering environment” which is published in the Nature journal Light Science & Application. The paper has since been named as one of the year’s most exciting pieces of research by international optics and photonics membership organisation, Optica. The study reveals that OAM retains its phase characteristics even when passing through highly scattering media, unlike regular light signals. This means it can detect extremely small changes with an accuracy of up to 0.000001 on the refractive index, far surpassing the capabilities of many current diagnostic technologies. Professor Meglinski who is based at Aston Institute of Photonic Technologies said: “By showing that OAM light can travel through turbid or cloudy and scattering media, the study opens up new possibilities for advanced biomedical applications. “For example, this technology could lead to more accurate and non-invasive ways to monitor blood glucose levels, providing an easier and less painful method for people with diabetes.” The research team conducted a series of controlled experiments, transmitting OAM beams through media with varying levels of turbidity and refractive indices. They used advanced detection techniques, including interferometry and digital holography, to capture and analyse the light's behaviour. They found that the consistency between experimental results and theoretical models highlighted the ability of the OAM-based approach. The researchers believe that their study’s findings pave the way for a range of transformative applications. By adjusting the initial phase of OAM light, they believe that revolutionary advancements in fields such as secure optical communication systems and advanced biomedical imaging will be possible in the future. Professor Meglinski added: "The potential for precise, non-invasive transcutaneous glucose monitoring represents a significant leap forward in medical diagnostics. “My team’s methodological framework and experimental validations provide a comprehensive understanding of how OAM light interacts with complex scattering environments, reinforcing its potential as a versatile technology for future optical sensing and imaging challenges.” ENDS https://www.nature.com/articles/s41377-024-01562-7 Light: Science & Applications volume 13, Article number: 214 (2024) August 2024 https://doi.org/10.1038/s41377-024-01562-7 Authors: Igor Meglinski, Ivan Lopushenko, Anton Sdobnov & Alexander Bykov About Aston University For over a century, Aston University’s enduring purpose has been to make our world a better place through education, research and innovation, by enabling our students to succeed in work and life, and by supporting our communities to thrive economically, socially and culturally. Aston University’s history has been intertwined with the history of Birmingham, a remarkable city that once was the heartland of the Industrial Revolution and the manufacturing powerhouse of the world. Born out of the First Industrial Revolution, Aston University has a proud and distinct heritage dating back to our formation as the School of Metallurgy in 1875, the first UK College of Technology in 1951, gaining university status by Royal Charter in 1966, and becoming The Guardian University of the Year in 2020. Building on our outstanding past, we are now defining our place and role in the Fourth Industrial Revolution (and beyond) within a rapidly changing world. For media inquiries in relation to this release, contact Nicola Jones, Press and Communications Manager, on (+44) 7825 342091 or email: n.jones6@aston.ac.uk

2 min

Aston University researchers to explore using AI and fibre-optic networks to monitor natural hazards and infrastructures

Aston University is leading a new £5.5 million EU research project Will focus on converting fibre-optic cables into sensors to detect natural hazards Could identify earthquakes and tsunamis and assess civil infrastructure. Aston University is leading a new £5.5 million EU research project to explore converting existing telecommunication fibre-optic cables into sensors which can detect natural hazards, such as earthquakes and tsunamis, and assess the condition of civil infrastructure. The project is called ECSTATIC (Engineering Combined Sensing and Telecommunications Architectures for Tectonic and Infrastructure Characterisation) and is part of the Horizon Europe Research and Innovation Action (RIA), which aims to tackle global challenges and boost the continent’s industrial competitiveness. Converting telecom fibres into sensors requires new digital signal processing to overcome the limited data storage and processing capabilities of existing communication networks. To address this the project will use localised, high performance digital processing that will integrate artificial intelligence and machine learning. The researchers’ goal is to minimise algorithms’ complexity while providing extremely accurate real-time sensing of events and network condition. The new laser interrogation and signal processing technologies will be tested using existing fibre optic networks, including those underwater, in cities, and along railway infrastructure to assess their potential. Delivered by a consortium of 14 partners across seven countries, from academic and non-academic sectors, the research will start in February 2025 and will last three and a half years. The Europe-wide team will be led by Professor David Webb who is based in the Aston Institute of Photonic Technologies (AIPT). Professor Webb said: “There are more than five billion kilometres of installed data communications optical fibre cable, which provides an opportunity to create a globe-spanning network of fibre sensors, without laying any new fibres. “These traverse the seas and oceans - where conventional sensors are practically non-existent - and major infrastructures, offering the potential for smart structural health monitoring.” Professor Webb will be joined by fellow researchers Professor Sergei Turitsyn, Dr Haris Alexakis and Dr Pedro Freire. For media inquiries in relation to this release, contact Nicola Jones, Press and Communications Manager, on (+44) 7825 342091 or email: n.jones6@aston.ac.uk

3 min

EU-UK Trade Deal continues to stifle trade with 27% drop in exports since 2021

New report shows persistent stifling effects of the impact of the Trade and Cooperation Agreement on UK-EU trade relations Monthly data show a 27% drop in UK exports and a 32% reduction in imports to and from the EU between 2021 and 2023 Recommendations for policy interventions include to negotiate sector-specific deals, engage with individual EU countries, and work on reducing non-tariff barriers A comprehensive analysis by researchers at the Centre for Business Prosperity at Aston University reveals that negative impacts of the UK-EU Trade and Cooperation Agreement (TCA) have intensified over time. The new report, Unbound: UK Trade Post Brexit, also shows a 33% reduction in the variety of goods exported, with the agricultural, textiles, clothing and materials sectors most affected. To assess the impact of the UK-EU TCA, the authors analysed monthly import and export between the UK and the EU, from January 2017 to December 2023 and separated into pre- and post-January 2021 when the agreement came into force. The monthly data shows a 27% drop in UK exports and a 32% decline in imports from the EU. Lead author, Professor Jun Du of Aston University says: “The Trade and Cooperation Agreement introduced substantial barriers and there are ongoing and marked declines in the value and variety of UK exports and imports. Without urgent policy interventions, the UK’s economic position and place in the global market will continue to weaken.” The UK-EU TCA redefined trade and investment rules and market access between the UK and the EU. Since it came into force, the UK government has negotiated several trade agreements, but the EU remains the UK’s largest trade partner. Exports for most sectors have decreased since January 2021, although the impact is varied. Agrifood, textile and clothing and material-based manufacturing have been among the hardest hit, with substantial declines in both export value and the variety of products exported. At the same time, some sectors such as tobacco, railway and aircraft manufacturing have seen modest increases in varieties of products exported. On the import side, most sectors have shrunk in both value and variety, particularly agrifood products, optical, textile and material-based manufacturing. A few sectors, for example, ships and furniture, have demonstrated noticeable increases in import product variety. The large variations across different goods categories and EU trade partners underscore the uneven effects of Brexit and the TCA on UK-EU trade dynamics, highlighting the need to understand the nuances and come up with tailored strategies that address the unique challenges of each sector within the new regulatory environment. The researchers make recommendations, outlining how sector-specific negotiations, streamlining customs procedures with digital technologies and reducing regulatory divergence could mitigate some of the impacts. Dr Oleksandr Shepotylo, the report’s co-author says: “Our findings indicate a decoupling of the UK from key EU final goods markets, accompanied by a shift in UK supply chains toward geographically closer EU trading partners for exports and smaller countries for imports. “This shift raises concerns and underscores the urgent need for a strategic reconfiguration of UK supply chains to maintain competitiveness.” Professor Du continues: “The TCA has introduced considerable barriers to UK-EU trade, particularly through increased Non-tariff measures (NTMs). “Addressing these issues through targeted improvements to the TCA is crucial to ensuring that UK businesses remain competitive in the European market. A structured, multi-faceted approach is necessary.” To find out more about these findings, click here.

View all posts