Manuka honey could help to clear deadly drug-resistant lung infection – research

Sep 8, 2022

4 min

Dr Jonathan A. G. Cox



• Scientists develop a potential nebulisation treatment using manuka honey to clear a drug resistant lung infection that can be fatal in cystic fibrosis patients

• Aston University researchers combined the antibiotic amikacin with manuka honey as a novel treatment for Mycobacterium abscessus

• Using the manuka honey combination resulted in an eight-fold reduction in the dosage of the antibiotic


A potential new treatment combining natural manuka honey with a widely used drug has been developed by scientists at Aston University to treat a potentially lethal lung infection and greatly reduce side effects of one of the current drugs used for its treatment.


The findings, which are published in the journal Microbiology, show that the scientists in the Mycobacterial Research Group in the College of Health and Life Sciences at Aston University were able to combine manuka honey and the drug amikacin in a lab-based nebulisation formulation to treat the harmful bacterial lung infection Mycobacterium abscessus.


Manuka honey is long known to have wide ranging medicinal properties, but more recently has been identified for its broad spectrum antimicrobial activity. Now scientists have found that manuka honey has the potential to kill a number of drug resistant bacterial infections such as Mycobacterium abscessus – which usually affects patients with cystic fibrosis (CF) or bronchiectasis.


According to the Cystic Fibrosis Trust, CF is a genetic condition affecting around 10,800 people - one in every 2,500 babies born in the UK -and there are more than 100,000 people with the condition worldwide. The NHS defines bronchiectasis as a long-term condition where the airways of the lungs become widened, leading to a build-up of excess mucus that can make the lungs more vulnerable to infection..

In the study, the researchers used samples of the bacteria Mycobacterium abscessus taken from 16 infected CF patients. They then tested the antibiotic amikacin, combined with manuka honey, to discover what dosage was required to kill the bacteria.


As part of the study the team used a lab-based lung model and nebuliser - a device that produces a fine spray of liquid often used for inhaling a medicinal drug. By nebulising manuka honey and amikacin together, it was found they could improve bacterial clearance, even when using lower doses of amikacin, which would result in less life-changing side-effects to the patient.


In the UK, of the 10,800 people living with CF, Mycobacterium abscessus infects 13% of all patients with the condition. This new approach is advantageous not only because it has the potential to kill off a highly drug resistant infection, but because of the reduced side effects, benefitting quality of life and greatly improving survival chances for infected CF patients.


Mycobacterium abscessus is a bacterial pathogen from the same family that causes tuberculosis, but this bug differs by causing serious lung infections in people (particularly children) with pre-existing lung conditions, such as CF and bronchiectasis, as well as causing skin and soft tissue infections. The bacteria is also highly drug resistant.


Currently, patients are given a cocktail of antibiotics, consisting of 12 months or more of antimicrobial chemotherapy and often doesn’t result in a cure. The dosage of amikacin usually used on a patient to kill the infection is 16 micrograms per millilitre. But the researchers found that the new combination using manuka honey, required a dosage of just 2 micrograms per millitre of amikacin - resulting in a one eighth reduction in the dosage of the drug.


Until now Mycobacterium abscessus has been virtually impossible to eradicate in people with cystic fibrosis. It can also be deadly if the patient requires a lung transplant because they are not eligible for surgery if the infection is present.


Commenting on their findings, lead author and PhD researcher Victoria Nolan said:


"So far treatment of Mycobacterium abscessus pulmonary infections can be problematic due to its drug resistant nature. The variety of antibiotics required to combat infection result in severe side effects.

"However, the use of this potential treatment combining amikacin and manuka honey shows great promise as an improved therapy for these terrible pulmonary infections.

“There is a need for better treatment outcomes and in the future we hope that this potential treatment can be tested further.”


Dr Jonathan Cox, senior lecturer in microbiology, Aston University said:


“By combining a totally natural ingredient such as manuka honey with amikacin, one of the most important yet toxic drugs used for treating Mycobacterium abscessus, we have found a way to potentially kill off these bacteria with eight times less drug than before. This has the potential to significantly reduce amikacin-associated hearing loss and greatly improve the quality of life of so many patients – particularly those with cystic fibrosis.

“I am delighted with the outcome of this research because it paves the way for future experiments and we hope that with funding we can move towards clinical trials that could result in a change in strategy for the treatment of this debilitating infection.”


Dr Peter Cotgreave, chief executive of the Microbiology Society said:


"The Microbiology Society is proud to support the scientific community as it explores innovative solutions to overcome the growing global challenge of antimicrobial resistance. This study demonstrates one of many ways in which microbiologists are pioneering new methods to tackle drug-resistant infections, by incorporating natural products, like manuka honey, into existing therapies."


For more information about the School of Biosciences, please visit our website.



Connect with:
Dr Jonathan A. G. Cox

Dr Jonathan A. G. Cox

Lecturer in Microbiology

Dr Cox's research interests surround the discovery of new antibiotics & identifying the mechanisms by which those antibiotics kill bacteria.

Health SciencesBiochemistryAntibioticsAntimicrobial ResistanceMicro-Organisms

You might also like...

Check out some other posts from Aston University

2 min

Aston University researcher takes on leadership role within biomedical engineering

Dr Antonio Fratini is the new chair of the Institute of Mechanical Engineers Biomedical Engineering Division It is one of the largest group of professional biomedical engineers in the UK The specialism merges professional engineering with medical knowledge of the human body, such as artificial limbs and robotic surgery. An Aston University researcher has been given a leading role within the biomedical engineering sector. Dr Antonio Fratini CEng MIMechE has been elected as the new chair of the Biomedical Engineering Division (BmED) of the Institution of Mechanical Engineers (IMechE), one of the largest groups of professional biomedical engineers in the UK. The IMechE has around 115,000 members in 140 countries and has been active since 1847. Biomedical engineering, also known as medical engineering or bioengineering, is the integration of engineering with medical knowledge to help tackle clinical problems and improve healthcare outcomes. Dr Fratini previously served as chair of the Birmingham centre of the division for five years and as vice-chair of the division for one year. His research includes responsible use of AI, 3D segmentation and anatomical modelling to improve surgical training and planning, motor functions and balance rehabilitation. He leads Aston University’s Engineering for Health Research Centre within the College of Engineering and Physical Sciences and has vast experience in the design, development and testing of new medical devices. Currently he is the University’s principal investigator for the West Midlands Health Tech Innovation Accelerator and he has a growing reputation in the UK and internationally within the biomedical engineering profession. He said: “Biomedical engineering is continuously evolving and our graduates will create the future of health tech and med tech for more effective, sustainable, responsible and personalised healthcare. “I am very honoured of this appointment. This three-year post will be a great opportunity to further develop the biomedical engineering profession worldwide and to show Aston University’s commitment to an inclusive, entrepreneurial and transformational impact within the field.” Professor Helen Meese, outgoing chair of the division, said: “I am delighted to see Antonio take on the chair’s position. He has, over the years, contributed significantly to the growth of the Birmingham regional centre and has actively supported me throughout my tenure as chair. I know how passionate he is about our profession and will undoubtedly continue to drive the division forward over the next three years.” Dr Frattini was presented with his new title on 20 June at the IMECHE HQ at 1 Birdcage Walk, London during the Institution’s technology strategy board meeting. For media inquiries in relation to this release, contact Nicola Jones, Press and Communications Manager, on (+44) 7825 342091 or email: n.jones6@aston.ac.uk

3 min

Aston University researcher develops method of making lengthy privacy notices easier to understand

It has been estimated it would take 76 days per year to fully read privacy notices New method makes notices quicker and easier to understand by converting them into machine-readable formats Team designed a JavaScript Object Notation schema which allowed them to validate, annotate, and manipulate documents. An Aston University researcher has suggested a more human-friendly way of reading websites’ long-winded privacy notices. A team led by Dr Vitor Jesus has developed a system of making them quicker and easier to understand by converting them into machine-readable formats. This technique could allow the browser to guide the user through the document with recommendations or highlights of key points. Providing privacy information is one of the key requirements of the UK General Data Protection Regulation (GDPR) and the UK Data protection Act but trawling through them can be a tedious manual process. In 2012, The Atlantic magazine estimated it would take 76 days per year to diligently read privacy notices. Privacy notices let people know what is being done with their data, how it will be kept safe if it’s shared with anyone else and what will happen to it when it’s no longer needed. However, the documents are written in non-computer, often legal language, so in the paper Feasibility of Structured, Machine-Readable Privacy Notices Dr Jesus and his team explored the feasibility of representing privacy notices in a machine-readable format. Dr Jesus said: “The notices are essential to keep the public informed and data controllers accountable, however they inherit a pragmatism that was designed for different contexts such as software licences or to meet the - perhaps not always necessary - verbose completeness of a legal contract. “And there are further challenges concerning updates to notices, another requirement by law, and these are often communicated off-band e.g., by email if a user account exists.” Between August and September 2022, the team examined the privacy notices of 50 of the UK’s most popular websites, from globally organisation such as google.com to UK sites such as john-lewis.com. They covered a number of areas such as online services, news and fashion to be representative. The researchers manually identified the notices’ apparent structure and noted commonly-themed sections, then designed a JavaScript Object Notation (JSON) schema which allowed them to validate, annotate, and manipulate documents. After identifying an overall potential structure, they revisited each notice to convert them into a format that was machine readable but didn’t compromise both legal compliance and the rights of individuals. Although there has been previous work to tackle the same problem, the Aston University team focused primarily on automating the policies rather than data collection and processing. Dr Jesus, who is based at the University’s College of Engineering and Physical Sciences said: “Our research paper offers a novel approach to the long-standing problem of the interface of humans and online privacy notices. “As literature and practice, and even art, for more than a decade have identified, privacy notices are nearly always ignored and ”accepted” with little thought, mostly because it is not practical nor user-friendly to depend on reading a long text simply to access, for example a news website. Nevertheless, privacy notices are a central element in our digital lives, often mandated by law, and with dire, often invisible, consequences.” The paper was published and won best paper at the International Conference on Behavioural and Social Computing, November 2023, now indexed at IEEE Xplore. The team are now examining if AI can be used to further speed up the process by providing recommendations to the user, based on past preferences.

2 min

Aston University optometrists take up global industry association roles

Professor Nicola Logan has been named a global myopia management ambassador by the World Council of Optometry Dr Debarun Dutta is the new academic chair of the British Contact Lens Association Aston University School of Optometry is ranked in the top 10 for research in the Complete University Guide 2024 Professor Nicola Logan and Dr Debarun Dutta from Aston University’s School of Optometry have both been appointed to major roles within optometry industry associations. The School of Optometry is regularly ranked highly by both leading national ranking publications and in annual student-led surveys. This includes a top 10 ranking for research and a top five ranking for graduate prospects in the Complete University Guide 2024, and first in the UK for student/staff ratio in health professions (optometry) in the Guardian University Guide 2024. Professor Logan, professor of optometry and physiological optics and deputy head of the School, has been named a global myopia management ambassador by the World Council of Optometry (WCO). She is one of four new ambassadors named by the WCO in collaboration with CooperVision, a leading myopia management company. WCO and CooperVision have developed a myopia management online tool which reflects WCO’s global standard of myopia care. In March 2024, Professor Logan presented her inaugural lecture at Aston University on her research into the nature of myopia, the growing evidence base on strategies to control eye growth in children and translation of these findings to clinical practice. She said about her appointment as an ambassador: “I am thrilled to be appointed as the global myopia management ambassador for the World Council of Optometry. This role provides me with a valuable platform to advance the recognition of myopia as a significant public health concern and to facilitate the translation of research into effective, evidence-based clinical practice strategies for children with myopia.” Dr Dutta, a lecturer in optometry, has been appointed the new academic chair of the British Contact Lens Association (BCLA). He will lead the BCLA’s academic output, including offering guidance and advice to the BCLA council about scientific and academic elements of contact lenses. Dr Dutta will initially work alongside current academic chair, Professor James Wolffsohn, Aston University’s head of optometry, who is currently on sabbatical from the University, before taking over when Professor Wolffsohn steps down in 2025. Dr Dutta said: “I am hugely excited at the prospect of delivering academic provision of the British Contact Lens Association, with a specific focus on a highly prestigious conference programme as we grow our reputation as a global leader in contact lens and anterior eye education. This is a rare opportunity to work alongside our association members, fellows, trustees, global ambassadors and volunteers inspiring a new era for the BCLA, and to support our growth and development ambitions through delivery of educational activities within the contact lens and anterior eye specialism.”

View all posts