#Expert Research: New National Science Foundation and NASA-Funded Research Investigates Martian Soil

Nov 16, 2022

3 min

Andrew Palmer, Ph.D.

Studies have shown crops can grow in simulated Martian regolith. But that faux material, which is similar to soil, lacks the toxic perchlorates that makes plant growth in real Red Planet regolith virtually impossible. New research involving Florida Tech is examining how to make the soil on Mars useful for farming.


Andrew Palmer, co-investigator and ocean engineering and marine sciences associate professor, along with Anca Delgado, principal investigator and faculty member at Arizona State University’s Biodesign Swette Center for Environmental Biotechnology, and researchers from the University of Arizona and Arizona State University, are participating in the study, “EFRI ELiS: Bioweathering Dynamics and Ecophysiology of Microbially Catalyzed Soil Genesis of Martian Regolith.” This National Science Foundation and NASA-funded project will use microorganisms from bacteria to remove perchlorates from Martian soil simulants and produce soil organic matter containing organic carbon and inorganic nutrients.


Martian regolith contains high concentrations of toxic perchlorate salts that will impede plant cultivation in soil, jeopardizing food security and potentially causing health problems for humans, including cancer. Researchers will look at different bacterial populations and how well they are able to process and break down the perchlorates, as well as what kind of materials they produce when they do. They’ll also look at different temperatures and moisture conditions, as well as in the presence or absence of oxygen. Students in the Palmer Lab will receive the simulants after this process, try to replicate it, and then test how well the perchlorate-free regolith is able to grow plants.



A challenge the researchers face is how they remove the toxic salts, as well as if they can remove all of them. Palmer cautioned that the possibility that removing the perchlorates does not necessarily mean the regolith is ready for farming.


“You can’t make the cure worse than the disease, so we have to be ending up with regolith on the other side that’s better than when we started,” Palmer said. “We can’t trade perchlorates for some other toxic accumulating compound. Just because we’re removing the perchlorates doesn’t necessarily mean that we’re going to make the regolith better for plants. We might just make it not toxic anymore. How much does it improve is really what we’re trying to figure out.”


Even without perchlorates, there are significant challenges to growing crops in Martian soil. While researchers have grown plants in simulated regolith, the regolith is not good for plant growth, as in addition to a lot of salts, it has a high pH and is very fine, which means it can ‘cement’ when wet, suffocating plant roots.


Being able to grow in the soil instead of using hydroponics could also provide a more efficient, cost-effective solution.


“There is always the option of hydroponic growth of food crops, but with a significant distance to Mars and the lack of readily available water, we need a different kind of plan,” said ASU’s Delgado. “If there is a possibility to grow plants directly in the soil, there are benefits in terms of water utilization and resources to get supplies to Mars.”


Some of the microbial solutions the team is proposing could also help with studies of soils on Earth.


“The best soils for agriculture on earth, they were taken up decades ago, and so now we’re trying to farm on new land that’s not really meant for agriculture, if you think about it,” Palmer said. “So, as we think about ways to convert it into better soil, I think this research helps teach us how to do that, but it also inspires.”


The research will also allow Florida Tech students to get hands-on space agriculture experience.



“We’re going to be training the grad students and the undergraduates who are going to be the researchers who take on those new challenges, so I think one of our most important products are going to be the students we train,” Palmer said. “We’ll deliver Mars soil, but we also deliver, I think, a future group of researchers.”


If you're a reporter looking to know more about this topic - then let us help with your coverage.


Dr. Andrew Palmer is an associate professor of biological sciences at Florida Tech and a go-to expert in the field of Martian farming. Andrew is available to speak with media regarding this and related topics. Simply click on his icon now to arrange an interview today.

Connect with:
Andrew Palmer, Ph.D.

Andrew Palmer, Ph.D.

Associate Professor | Ocean Engineering and Marine Sciences

Dr. Palmer's research interests include eavesdropping on bacterial 'conversations', Martian farming, and cell wall fragment-based signaling.

AstrobiologyOcean EngineeringBiomedicalMolecular BiologyBiochemistry

You might also like...

Check out some other posts from Florida Tech

2 min

Covering the Tragic Crash in Washington - Our Experts Can Help

The shocking news of an in-air collision in Washington has garnered massive attention from media, airline authorities and industry experts. Reporters covering the story - rely on experts.  And that's where's Florida Tech's Shem Malmquist was called to lend his expert perspective, insight and opinion on a story that's making international news. "It just shows that traffic is in our location, there's a potential collision hazard," said Shem Malmquist, a pilot and visiting instructor of general aviation and transport aircraft at the Florida Institute of Technology. And in certain situations, it will provide guidance for the pilots on how to avoid a collision, he said. For example, if TCAS believes the pilot needs to pay attention to other air traffic in the area, it may say "traffic traffic," Malmquist said. January 30 - CBC News Shem Malmquist, who is a pilot and instructor at the Florida Institute of Technology, said midair collisions are extremely rare. Malmquist said if they happen they normally happen at smaller airports without air traffic control towers like the Lantana Airport. "The only method of separating traffic is visually, as well as airplanes communicating their positions to other airplanes, and that's going to create more risk," Malmquist said. January 30 - WPTV/NBC News American Airlines Flight 5342 and a military helicopter collided mid-air late Wednesday night near Ronald Reagan Washington National Airport. Officials believe all 64 people aboard the airplane -- 60 passengers, 4 crew members -- and the three people aboard the helicopter are dead. Officials conducted a frantic rescue effort overnight, which transitioned to a recovery effort early Thursday. Many aboard the plane were in Wichita, Kansas for a figure skating competition. Captain Shem Malmquist, an aviation expert at Florida Institute of Technology, joins FOX 35 to talk more about what happened. January 30- Fox News Orlando Looking to connect with Shem Malmquist regarding this ongoing story? He's available, simply click on his icon now to arrange an interview today.

2 min

Lingam, Mirsayar, van Woesik Recognized as ‘Top Scholars’ by ScholarGPS

Florida Tech faculty members Manasvi Lingam, Mirmilad Mirsayar and Robert van Woesik were named “Top Scholars” by ScholarGPS for their contributions to academia over the last five years. Lingam, who studies astrobiology in the Department of Aerospace, Physics and Space Sciences, was ranked No. 9,562 in the world across all disciplines and nearly 15 million ranked scholars, placing him in the top 0.06% of the platform’s scholars globally. He faired strongly in other areas, including: No. 1,919 (0.1%) among 1.9 million scholars in physical sciences and mathematics No. 491 (0.09%) among 545,000 scholars in physics No. 42 (0.31%) among 13,590 scholars in the specialty area planets ScholarGPS cited Lingam’s strong publication record, the impact of his work and the notable quality of his scholarly contributions. He’s published 50 times since 2020, exploring the possible origins, evolution and future of life in the universe. Mirsayar, who studies aerospace engineering, was ranked No. 35,155 across all disciplines and nearly 15 million ranked scholars, placing him in the top 0.24% of scholars globally. He’s published 11 times between 2020-2023, covering topics such as fracture mechanics and solid mechanics. Other highlights include: No. 6 (0.06%) among 8,601 scholars in fracture mechanics No. 49 (1.7%) among 2,879 scholars in solid mechanics No. 315 (1.8%) among 16,847 scholars in reinforced concrete Van Woesik, who studies coral reef ecology, was ranked No. 58,081 across disciplines, putting him in the top 0.39% of nearly 15 million scholars globally. He’s had 22 publications since 2020, covering topics such as coral bleaching, thermal stress and climate change. Van Woesik, who studies coral reef ecology, was ranked No. 58,081 across disciplines, putting him in the top 0.39% of nearly 15 million scholars globally. He’s had 22 publications since 2020, covering topics such as coral bleaching, thermal stress and climate change. Other highlights include: No. 5,282 (0.32%) among 1.7 million scholars in life sciences No. 336 (0.38%) among 88,930 scholars of ecology and evolutionary biology No. 191 (0.95%) among 19,998 scholars of global change. ScholarGPS uses artificial intelligence and data mining technologies to rank individuals, academic institutions and programs. Scholars are ranked by their number of publications, their citations, their h-index and their ScholarGPS® Ranks, which includes all three metrics. If you're interested in connecting with Manasvi Lingam, Robert van Woesik and Mirmilad Mirsayar- simply contact Adam Lowenstein, Director of Media Communications at Florida Institute of Technology at adam@fit.edu to arrange an interview today.

3 min

Florida Tech’s Pallav Ray Seeks to Improve Accuracy of Rainfall Predictions During Monsoon Season

Growing up in Kolkata, India, Pallav Ray recalls hot spring days leading up to summer’s monsoon season. Temperatures sat above 35 degrees Celsius (95 degrees Fahrenheit), rarely falling below that. When it rained, however, that’s when he could find relief – often by walking barefoot on the cool ground. Now an associate professor of ocean engineering and marine sciences at Florida Tech, Ray studies tropical climate dynamics and their variability using observations, models and theory. His paper, “Rain‐Induced Surface Sensible Heat Flux Reduces Monsoonal Rainfall Over India,” was published in Geophysical Research Letters and highlights research he said was inspired by his childhood in India’s hot climate. His research, funded by the National Oceanic and Atmospheric Administration (NOAA), found that including a variable that is often neglected by climate models could improve the accuracy of rainfall predictions. In turn, that could help agriculture industries better prepare for regional irrigation and flooding during monsoon season. Ray’s climate modeling research spans across the globe, from India, to Chicago, Ill., and most recently the Indo-Pacific Maritime Continent archipelago, which includes countries such as Indonesia and New Guinea. The variable, notated as “Qp,” represents precipitation-induced sensible heat flux, which is a component of surface energy that influences precipitation. It essentially accounts for how precipitation cools land surface temperatures. Qp is calculated using a formula accounting for the specific heat of rainwater, density of rainwater, the rate of rain, surface temperature and the temperature of raindrops when they hit the surface. This variable is important, Ray explained, because the temperature of raindrops is typically cooler than the temperature of the surface, so when it rains, the surface cools down. During monsoon season, land is warm and the ocean is cooler, which pushes moist air from the ocean to the land. The higher the temperature difference between the land and the ocean, the stronger the monsoon because it brings more moisture, Ray explained. In testing Qp, Ray and his team of researchers ran simulations investigating the variable’s role on precipitation. They found that when incorporating it, not only is anticipated precipitation reduced by up to 5% – which he says is a significant reduction – but the models also reflect changes in the spatial distribution of precipitation. “The moment we include that term, it cools down the surface, land surface. The temperature difference is smaller between the land and the ocean,” Ray said. “That reduces the overall precipitation overland because now less moisture is coming from the ocean.” In India, Ray explained, most models, overestimate precipitation. His results generated predictions that were much closer to observed rainfall. He says that inclusion of this variable in common climate models could influence India’s regional agriculture and irrigation strategies. According to Ray, rainfall is closely tied to the India’s industries, especially agriculture. He said the variable may have the greatest impact on seasonal rainfall predictions, which happen months in advance and determine how the country approaches its agricultural practices. Policymakers rely on seasonal rainfall predictions to anticipate and plan for summer monsoons, and the money allocated to deal with excess rainfall is “tremendous,” he said. “If you can do a seasonal prediction a few months in advance and your precipitation actually changed by 5%, it’ll change whether you’ll have an excess year versus you’ll have a deficit year,” Ray said. “I think that’s where the main, major impact is.” In his future research, Ray would like to explore how Qp would impact climate models over urban areas here in Florida. If you're interested in learning more about predicting monsoons and the other fascinating research  Pallav Ray is doing at Florida Tech   - simply contact  Adam Lowenstein, Director of Media Communications at Florida Institute of Technology at adam@fit.edu to arrange an interview today.

View all posts