Aston University scientist showcases research to convert rice straw into bioenergy for Philippines’ rural communities

Oct 31, 2023

4 min

Dr Mirjam Röder



• Rice straw could be a fuel of the future in rural Philippines

• Across Asia 300 million tonnes of rice straw go up in smoke every year

• New proposals includes scaling up harvesting system with straw removal, biogas-powered rice drying and storage and efficient milling.


An Aston University bioenergy researcher has been explaining how rice straw could be a fuel of the future in rural Philippines.


Dr Mirjam Roeder who is based at the University’s Energy & Bioproducts Research Institute (EBRI) is collaborating with the UK company Straw Innovations Ltd, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA) and Koolmill Systems Ltd to showcase their research.


The Food and Agriculture Organisation (FAO) states that rice is the number one food crop globally and 91% of it is produced and consumed in Asia. As a crop it is responsible for 48% of global crop emissions and for every kilogram of rice, a kilo of straw is produced.


Across Asia 300 million tonnes of rice straw go up in smoke every year when burnt after harvest, releasing emissions and air pollutants that triple risks of increased respiratory diseases and accelerate climate change.


To raise awareness of sustainable uses for rice straw Dr Roeder has travelled to the sixth International Rice Congress in Manila, Philippines to explain the potential of the emerging technology.

Rice straw is an underdeveloped feedstock and can be collected and digested to produce biogas, unlocking sustainable straw management options and renewable energy for farmers using anaerobic digestion (AD) from rice straw.


Dr Roeder has been working with Straw Innovations on their UK Innovate project demonstration facility in the Philippines, the Rice Straw Biogas Hub, which is scaling up a complete harvesting system with straw removal, biogas-powered rice drying and storage, together with efficient milling.


Craig Jamieson, Straw Innovations said: “The International Rice Congress is only held every four years and is a key event for coordinating and tracking progress in rice research.

“Our partnership with Aston University and SEARCA adds independent, scientific rigour to the work we do and amplifies our message to government policy makers. We are grateful to Innovate UK for their ongoing support through the Energy Catalyst Programme, which is accelerating our development.”


At the conference Dr Roeder has been explaining how independent environmental and social research can increase farmer incomes, equality of opportunity, food security and decarbonisation benefits.


She said: “Engaging with stakeholders and working in partnership across organisations is vital to the successful adoption of new technologies. I am delighted to have had the opportunity to host an event with our project partners at this prestigious conference, bringing the cutting-edge research of using rice straw for clean energy to the forefront of the rice research community and supporting the pathway to net zero.”


Dr Glenn B Gregorio, Center Director of SEARCA, added: "We are gaining insights into the environmental impact of rice straw utilisation and implementing policies to unleash its potential to empower us to make informed decisions that are instrumental to climate change mitigation and decarbonisation,"


Professor Rex Demafelis, University of the Philippines, is also working with SEARCA and is leading the project on life cycle analyses and measurements of rice straw greenhouse gas emissions. He said: “Rice straw is a valuable resource, and we are grateful to be part of this team which seeks to harness its full potential and promote circularity, which would ultimately contribute to our goal of reducing our greenhouse gas emissions.”


ENDS


The Supergen Bioenergy Hub works with academia, industry, government and societal stakeholders to develop sustainable bioenergy systems that support the UK’s transition to an affordable, resilient, low-carbon energy future.

The Hub is funded jointly by the Engineering and Physical Sciences Research Council (EPSRC) and the Biotechnology and Biological Sciences Research Council (BBSRC) and is part of the wider Supergen Programme.

For further information contact Rebecca Fothergill and Catriona Heaton supergen-bioenergy@aston.ac.uk


Follow us on Twitter @SuperBioHub

Visit our website at supergen-bioenergy.net

Visit our YouTube Channel to watch the video on Carbon Balance


FAO: RICE PRODUCTION IN THE ASIA-PACIFIC REGION: ISSUES AND PERSPECTIVES - M.K. Papademetriou* (fao.org) https://www.fao.org/3/x6905e/x6905e04.htm


About Aston University

For over a century, Aston University’s enduring purpose has been to make our world a better place through education, research and innovation, by enabling our students to succeed in work and life, and by supporting our communities to thrive economically, socially and culturally.

Aston University’s history has been intertwined with the history of Birmingham, a remarkable city that once was the heartland of the Industrial Revolution and the manufacturing powerhouse of the world.

Born out of the First Industrial Revolution, Aston University has a proud and distinct heritage dating back to our formation as the School of Metallurgy in 1875, the first UK College of Technology in 1951, gaining university status by Royal Charter in 1966, and becoming The Guardian University of the Year in 2020.

Building on our outstanding past, we are now defining our place and role in the Fourth Industrial Revolution (and beyond) within a rapidly changing world.

For media inquiries in relation to this release, contact Nicola Jones, Press and Communications Manager, on (+44) 7825 342091 or email: n.jones6@aston.ac.uk


Connect with:
Dr Mirjam Röder

Dr Mirjam Röder

Associate Professorial Research Fellow, Energy and Bioproducts Research Institute (EBRI)

Dr Röder's research interests focus on bioenergy and related sustainability implications.

SustainabilityNegative EmissionsBioenergy and BioeconomyClimate ChangeBioenergy and Carbon Capture and Storage (BECCS)

You might also like...

Check out some other posts from Aston University

3 min

Aston University’s Professor Ian Maidment receives prestigious National Institute for Health and Care Research award

Professor Ian Maidment has received a National Institute for Health and Care Research (NIHR) Senior Investigator Award The award recognises his outstanding leadership contributions to the work of the NIHR and his excellent track record of securing NIHR funding Professor Maidment is the first academic at Aston University to receive the honour. Professor Ian Maidment at Aston Pharmacy School has received a prestigious Senior Investigator Award from the National Institute for Health and Care Research (NIHR). The NIHR gives the award to researchers in recognition of outstanding leadership contributions to the work of the NIHR and an excellent track record of securing NIHR funding. As a senior investigator, Professor Maidment will act as an ambassador for NIHR, and help to guide strategy and tackle challenges in the health and social care landscape. He will join the NIHR College of around 200 senior investigators. Professor Maidment is the first academic at Aston University to receive the award and one of few pharmacists in the UK to receive such an award. Professor Maidment joined Aston University in 2012 as a senior lecturer, which marked his first step into academia after more than 20 years working in the NHS, both as a pharmacist and leading R&D. During his time in the NHS, he published 40 papers in peer-reviewed journals. These formed the basis of a PhD by previous publication, and Professor Maidment was the first person to obtain a PhD at Aston University by this route. He was promoted to reader in 2018 and a full chair in 2022. Professor Maidment specialises in the health care of older people and those with mental health conditions, and the use of medication to treat them. This includes projects investigating the long-standing and international healthcare priority of managing anti-psychotic weight gain. From this research project, guidance will be developed both for patients and practitioners. His research with older people has identified the need to focus on reducing medication burden and investigating the link between some medications and dementia. He also studies how to best use the expertise of community pharmacy to improve outcomes, for example in COVID vaccination and more recently how to make independent prescribing by community pharmacy work better; the importance of this issue was identified by UK Prime Minister Keir Starmer. The award also recognises Professor Maidment’s strong links with the NIHR and critically his continued role in supporting its work. This includes mentoring other researchers, leadership and contributing to the development of the NIHR. Professor Maidment said: “Optimising medication in the real world is a key research priority; about half of all people struggle with adherence to medication. Much of my research has been focused on bringing the patient voice to key research questions. If we can fully understand the patient and family carer view, then we can start to get the medication right.” Professor Anthony Hilton, Aston University pro-vice-chancellor and executive dean of the College of Health and Life Sciences, said: “Professor Ian Maidment’s NIHR Senior Investigator Award is a well-deserved recognition of his exceptional research in medication safety and the care of older adults and people with severe mental illness, such as schizophrenia. His work has not only advanced academic understanding but has also shaped real-world healthcare practices, improving outcomes for patients. “This achievement reflects his dedication, expertise and commitment to impactful research and his outstanding leadership contributions to the work of the NIHR. At Aston University, we are delighted to celebrate Ian’s success and the significant contribution he continues to make to the field.”

4 min

Aston University study reveals the illusion of ‘dazzle’ paint on World War I battleships

The Zealandia in wartime dazzle paint. Image: Australian National Maritime Museum on The Commons Geometric ‘dazzle’ camouflage was used on ships in WWI to confuse enemy onlookers as to the direction and speed of the ship Timothy Meese and Samantha Strong reanalysed historic data from 1919 and found that the ‘horizon effect’ is more effective for confusion When viewing a ship at distance, it often appears to be travelling along the horizon, regardless of its actual direction of travel – this is the ‘horizon effect’. A new analysis of 105-year-old data on the effectiveness of ‘dazzle’ camouflage on battleships in World War I by Aston University researchers Professor Tim Meese and Dr Samantha Strong has found that while dazzle had some effect, the ‘horizon effect’ had far more influence when it came to confusing the enemy. During World War I, navies experimented with painting ships with ‘dazzle’ camouflage – geometric shapes and stripes – in an attempt to confuse U-boat captains as to the speed and direction of travel of the ships and make them harder to attack. The separate ‘horizon effect’ is when a person looks at a ship in the distance, and it appears to be travelling along the horizon, regardless of its actual direction of travel. Ships travelling at an angle of up to 25° relative to the horizon appear to be travelling directly along it. Even with those at a greater angle to the horizon, onlookers significantly underestimate the angle. Despite widespread use of dazzle camouflage, it was not until 1919 that a proper, quantitative study was carried out, by MIT naval architecture and marine engineering student Leo Blodgett for his degree thesis. He painted model ships in dazzle patterns and placed them in a mechanical test theatre with a periscope, like those used by U-boat captains, to measure how much onlookers’ estimations of the ships’ direction of travel deviated from their actual direction of travel. Professor Meese and Dr Strong realised that while the data collected by Blodgett was useful, his methods of experimental design fell short of modern standards. He’d found that dazzle camouflage worked, but the Aston University team suspected that dazzle alone was not responsible for the results seen, cleaned the data and designed new analysis to better understand what it really shows. Dr Strong, a senior lecturer at Aston University’s School of Optometry, said: “It's necessary to have a control condition to draw firm conclusions, and Blodgett's report of his own control was too vague to be useful. We ran our own version of the experiment using photographs from his thesis and compared the results across the original dazzle camouflage versions and versions with the camouflage edited out. Our experiment worked well. Both types of ships produced the horizon effect, but the dazzle imposed an additional twist.” If the errors made by the onlookers in the perceived direction of travel of the ship were entirely due to the ‘twist’ on perspective caused by dazzle paintwork, the bow, or front, of the ship, would always be seen to twist away from its true direction. However, Professor Meese and Dr Strong instead showed that when the true direction was pointing away from the observer, the bow was often perceived to twist towards the observer instead. Their detailed analysis showed a small effect of twist from the dazzle camouflage but a much larger one from the horizon effect. Sometimes these effects were in competition, sometimes in harmony. Professor Meese, a professor of vision science at the School of Optometry, said: “We knew already about the twist and horizon effects from contemporary computer-based work with colleagues at Abertay University. The remarkable finding here is that these same two effects, in similar proportions, are clearly evident in participants familiar with the art of camouflage deception, including a lieutenant in a European navy. This adds considerable credibility to our earlier conclusions by showing that the horizon effect – which has nothing to do with dazzle – was not overcome by those best placed to know better. “This is a clear case where visual perception is more powerful than knowledge. In fact, back in the dazzle days, the horizon effect was not identified at all, and Blodgett's measurements of perceptual bias were attributed entirely to the camouflage, deceiving the deceivers.” Professor Meese and Dr Strong say that more work is required to fully understand how dazzle might have increased perceptual uncertainty of direction and speed but also the geometry behind torpedo-aiming tactics that might have supported some countermeasures. Visit https://doi.org/10.1177/20416695241312316 to read the full paper in i-Perception.

1 min

Lab grown meat could be on sale in UK within two years - but what is lab-grown meat?

Meat, dairy and sugar grown in a lab could be on sale in the UK for human consumption for the first time within two years, sooner than expected. The Food Standards Agency (FSA) is looking at how it can speed up the approval process for lab-grown foods. Such products are grown from cells in small chemical plants. UK firms have led the way in the field scientifically but feel they have been held back by the current regulations. Aston University has been working on cultivated meat - find out more about what lab-made meat is  made of and how it is created in the podcast Breaking Down Barriers on Spotify   https://open.spotify.com/episode/7bFy1gr2LJCwiRLPAT9Hml For further details contact Nicola Jones, Press and Communications Manager, on (+44) 7825 342091 or email: n.jones6@aston.ac.uk

View all posts