Aston University researcher takes on leadership role within biomedical engineering

Jun 27, 2024

2 min

Dr Antonio Fratini
  • Dr Antonio Fratini is the new chair of the Institute of Mechanical Engineers Biomedical Engineering Division
  • It is one of the largest group of professional biomedical engineers in the UK
  • The specialism merges professional engineering with medical knowledge of the human body, such as artificial limbs and robotic surgery.



An Aston University researcher has been given a leading role within the biomedical engineering sector.


Dr Antonio Fratini CEng MIMechE has been elected as the new chair of the Biomedical Engineering Division (BmED) of the Institution of Mechanical Engineers (IMechE), one of the largest groups of professional biomedical engineers in the UK.


The IMechE has around 115,000 members in 140 countries and has been active since 1847.


Biomedical engineering, also known as medical engineering or bioengineering, is the integration of engineering with medical knowledge to help tackle clinical problems and improve healthcare outcomes.


Dr Fratini previously served as chair of the Birmingham centre of the division for five years and as vice-chair of the division for one year.


His research includes responsible use of AI, 3D segmentation and anatomical modelling to improve surgical training and planning, motor functions and balance rehabilitation. He leads Aston University’s Engineering for Health Research Centre within the College of Engineering and Physical Sciences and has vast experience in the design, development and testing of new medical devices. Currently he is the University’s principal investigator for the West Midlands Health Tech Innovation Accelerator and he has a growing reputation in the UK and internationally within the biomedical engineering profession.


He said: “Biomedical engineering is continuously evolving and our graduates will create the future of health tech and med tech for more effective, sustainable, responsible and personalised healthcare.


“I am very honoured of this appointment. This three-year post will be a great opportunity to further develop the biomedical engineering profession worldwide and to show Aston University’s commitment to an inclusive, entrepreneurial and transformational impact within the field.”


Professor Helen Meese, outgoing chair of the division, said: “I am delighted to see Antonio take on the chair’s position. He has, over the years, contributed significantly to the growth of the Birmingham regional centre and has actively supported me throughout my tenure as chair. I know how passionate he is about our profession and will undoubtedly continue to drive the division forward over the next three years.”


Dr Frattini was presented with his new title on 20 June at the IMECHE HQ at 1 Birdcage Walk, London during the Institution’s technology strategy board meeting.



For media inquiries in relation to this release, contact Nicola Jones, Press and Communications Manager, on (+44) 7825 342091 or email: n.jones6@aston.ac.uk


Connect with:
Dr Antonio Fratini

Dr Antonio Fratini

Senior Lecturer, Mechanical, Biomedical & Design Engineering

Dr Fratini's research is focussed on understanding how biomedical engineering can help to improve quality of life and clinical outcomes.

Biomedical EngineeringMedical InstrumentationPhysiological Data ProcessingProprioceptive StimulationWearable Medical Devices

You might also like...

Check out some other posts from Aston University

1 min

Lab grown meat could be on sale in UK within two years - but what is lab-grown meat?

Meat, dairy and sugar grown in a lab could be on sale in the UK for human consumption for the first time within two years, sooner than expected. The Food Standards Agency (FSA) is looking at how it can speed up the approval process for lab-grown foods. Such products are grown from cells in small chemical plants. UK firms have led the way in the field scientifically but feel they have been held back by the current regulations. Aston University has been working on cultivated meat - find out more about what lab-made meat is  made of and how it is created in the podcast Breaking Down Barriers on Spotify   https://open.spotify.com/episode/7bFy1gr2LJCwiRLPAT9Hml For further details contact Nicola Jones, Press and Communications Manager, on (+44) 7825 342091 or email: n.jones6@aston.ac.uk

4 min

Aston University collaboration to develop injectable paste which could treat bone cancer

A £110k grant from Orthopaedic Research UK is to help to conduct the work Study is a collaboration with The Royal Orthopaedic Hospital Researchers to use gallium-doped bioglass to produce a substance with anticancer and bone regenerative properties. Professor Richard Martin Aston University is collaborating in research to develop an injectable paste which could treat bone cancer. The Royal Orthopaedic Hospital has secured a £110,000 grant from Orthopaedic Research UK to conduct the work. The project will see researchers at the hospital and the University use gallium-doped bioglass to produce a substance with anticancer and bone regenerative properties. If proved effective it could be used to treat patients with primary and metastatic cancer. Gallium is a metallic element that when combined with bioactive glass can kill cancerous cells that remain when a tumour is removed. It also accelerates the regeneration of the bone and prevents bacterial contamination. A recent study led by Aston University found that bioactive glasses doped with the metal have a 99 percent success rate of eliminating cancerous cells. Dr Lucas Souza, research lab manager at the hospital’s Dubrowsky Lab is leading the project. He said : “Advances in treatment of bone cancer have reached a plateau over the past 40 years, in part due to a lack of research studies into treatments and the complexity and challenges that come with treating bone tumours. Innovative and effective therapeutic approaches are needed, and this grant provides vital funds for us to continue our research into the use of gallium-doped bioglass in the treatment of bone cancer.” Professor Richard Martin who is based in Aston University’s College of Engineering and Physical Sciences added: “The injectable paste will function as a drug delivery system for localised delivery of anticancer gallium ions and bisphosphonates whilst regenerating bone. Our hypothesis is that this will promote rapid bone formation and will prevent cancer recurrence by killing residual cancer cells and regulating local osteoclastic activity.” It is hoped the new approach will be particularly useful in reducing cancer recurrence and implant site infections. It is also thought that it will reduce implant failure rates in cases of bone tumours where large resections for complete tumour removal is either not possible, or not recommended. This could include incidents when growths are located too close to vital organs or when major surgery will inflict more harm than benefit. It could also be used in combination with minimally invasive treatments such as cryoablation or radiofrequency ablation to manage metastatic bone lesions. Dr Souza added: “The proposed biomaterial has the potential to drastically improve treatment outcomes of bone tumour patients by reducing cancer recurrence, implant-site infection rates, and implant failure rates leading to reduced time in hospital beds, less use of antibiotics, and fewer revision surgeries. Taken together, these benefits could improve survival rates, functionality and quality of life of bone cancer patients.” Other members of the team include the hospital’s Professor Adrian Gardner, director of research and development and Mr Jonathan Stevenson, orthopaedic oncology and arthroplasty consultant, Dr Eirini Theodosiou from Aston University and Professor Joao Lopes from the Brazilian Aeronautics Institute of Technology. ENDS About the Royal Orthopaedic Hospital NHS Foundation Trust The Royal Orthopaedic Hospital NHS Foundation Trust is one of the largest specialist orthopaedic units in Europe, offering planned orthopaedic surgery to people locally, nationally, and internationally. The Trust is an accredited Veteran Aware organisation and a Disability Confident Leader. Ranked 8th in the 2024 UK Inclusive Top 50 Employers list, the Royal Orthopaedic Hospital is the highest-ranking NHS organisation for its commitment to diversity and inclusion. The Royal Orthopaedic Hospital has a vibrant research portfolio of clinical trials, observational studies and laboratory studies exploring new treatment options, new approaches in rehabilitation and therapy, and new medical devices. This research is delivered by our researchers and clinicians spread across the Knowledge Hub, our home for education and research, and the Dubrowsky Regenerative Medicine Laboratory, a state-of-the-art lab opened in 2019. About Aston University For over a century, Aston University’s enduring purpose has been to make our world a better place through education, research and innovation, by enabling our students to succeed in work and life, and by supporting our communities to thrive economically, socially and culturally. Aston University’s history has been intertwined with the history of Birmingham, a remarkable city that once was the heartland of the Industrial Revolution and the manufacturing powerhouse of the world. Born out of the First Industrial Revolution, Aston University has a proud and distinct heritage dating back to our formation as the School of Metallurgy in 1875, the first UK College of Technology in 1951, gaining university status by Royal Charter in 1966, and becoming The Guardian University of the Year in 2020. Building on our outstanding past, we are now defining our place and role in the Fourth Industrial Revolution (and beyond) within a rapidly changing world. For media inquiries in relation to this release, contact Nicola Jones, Press & Communications Manager on 07941194168 or email: n.jones6@aston.ac.uk

4 min

Babies respond positively to smell of foods experienced in the womb according to study co-led at Aston University

Babies whose mothers took kale or carrot capsules when pregnant responded more favourably to these smells The research shows that the process of developing food preferences begins in the womb, much earlier than previously thought The research follows up on an earlier study Babies show positive responses to the smell of foods they were exposed to in the womb after they are born, according to a new study. The findings, led by Durham University, UK, could have implications for understanding how healthy eating habits might be established in babies during pregnancy. The research included scientists from Aston University, UK, and the Centre national de la recherche scientifique (CNRS) and University of Burgundy, France. It is published in the journal Appetite. Researchers analysed the facial expressions of babies who had been repeatedly exposed to either kale or carrot in the womb after birth. Newborns whose mothers had taken carrot powder capsules when pregnant were more likely to react favourably to the smell of carrot. Likewise, babies whose mothers had taken kale powder capsules while pregnant reacted more positively to the kale scent. Research co-lead author and supervisor Professor Nadja Reissland, of the Fetal and Neonatal Research Lab, Department of Psychology, Durham University, said: “Our analysis of the babies’ facial expressions suggests that they appear to react more favourably towards the smell of foods their mothers ate during the last months of pregnancy. Potentially this means we could encourage babies to react more positively towards green vegetables, for example, by exposing them to these foods during pregnancy. “In that respect, the memory of food the mother consumes during pregnancy appears to establish a preference for those smells and potentially could help to establish healthy eating habits at a young age.” This study is a follow-up to a 2022 research paper where the researchers used 4D ultrasound scans at 32 and 36 gestational weeks to study foetal facial expressions after their pregnant mothers had ingested a single dose of either 400mg of carrot or kale capsules. Foetuses exposed to carrot showed more “laughter-face” responses while those exposed to kale showed more “cry-face” responses. For the latest study, the researchers followed up 32 babies from the original research paper – 16 males and 16 females – from 36 weeks gestation until approximately three weeks after birth. Mothers consumed either carrot or kale capsules every day for three consecutive weeks until birth. When the babies were about three weeks old, the research team tested newborns’ reactions to kale, carrot, and a control odour. Separate wet cotton swabs dipped in either carrot or kale powders, or water as the control, were held under each infant’s nose and their reaction to the different smells was captured on video. The babies did not taste the swabs. Scientists then analysed the footage to see how the newborns reacted and compared these reactions with those seen before the babies were born to understand the effects of repeated flavour exposure in the last trimester of pregnancy. The research team found that, from the foetal to newborn period, there was an increased frequency in “laughter-face” responses and a decreased frequency in “cry-face” responses to the smell the babies had experienced before birth. Humans experience flavour through a combination of taste and smell. In foetuses, this happens through inhaling and swallowing the amniotic fluid in the womb. Research co-lead author Dr Beyza Ustun-Elayan carried out the research while doing her PhD at Durham University. Dr Ustun-Elayan, who is now based at the University of Cambridge, said: “Our research showed that foetuses can not only sense and distinguish different flavours in the womb but also start learning and establish memory for certain flavours if exposed to them repeatedly. This shows that the process of developing food preferences begins much earlier than we thought, right from the womb. By introducing these flavours early on, we might be able to shape healthier eating habits in children from the start.” The researchers stress that their findings are a baseline study only. They say that longer follow-up studies are needed to understand long-term impacts on child eating behaviour. They add that further research would also need to be carried out on a larger group of infants, at different points in time. They say that the absence of a control group not exposed to specific flavours makes it challenging to fully disentangle developmental changes in the babies from the effects of repeated flavour exposure. Future research should also factor in post-birth flavour experiences, such as some milk formulas known to have a bitter taste, which could impact babies’ responses to the smell of bitter and non-bitter vegetables. The research involved the children of white British mothers, and the researchers say that future studies should be widened to explore how different cultural dietary practices might influence foetal receptivity to a broader array of flavours. Research co-author Professor Jackie Blissett, at Aston University’s School of Psychology, said: “These findings add to the weight of evidence that suggests that flavours of foods eaten by mothers during late pregnancy are learnt by the foetus, preparing them for the flavours they are likely to experience in postnatal life.” Research co-author Professor Benoist Schaal, National Centre for Scientific Research (CNRS)-University of Burgundy, France said: “Foetuses not only detect minute amounts of all types of flavours the mothers ingest, but they overtly react to them and remember them while in the womb and then after birth for quite long times. In this way, mothers have an earlier than early teaching role, as the providers of the infant’s first odour or flavour memories.” Visit https://doi.org/10.1016/j.appet.2025.107891 to read the full research paper in Appetite.

View all posts